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ABSTRACT 

There are as yet few quantitative measures in place to manage the majority of low-value fish stocks 

worldwide, mainly due to the lack of reliable data on which to base quantitative assessments. The 

FAO (2010) has highlighted the need for the development of scientific assessment methods and 

management procedures for an estimated 90% of the stocks exploited worldwide that are currently not 

assessed. Formal quantitative stock assessments are generally costly, because they are expertise 

hungry and demand large quantities of time and information. As such, they do not present a practical 

management solution for most data-poor stocks, particularly when these are also low value (as is 

generally the case). Due to the high costs of data collection, these methods and procedures need to be 

less data-demanding, easy to implement, give reliable estimates of stock status were possible (e.g. 

abundance relative to some biomass reference point such as MSYB ) and provide the quantitative 

information necessary for providing effective management solutions. This review summarises a suite 

of approaches when data are limited. These approaches include both simple assessment methods and 

empirical management procedures (or harvest control rules), grouped according to the data required. 

 

The Report consists of three parts: Part 1 gives an overview of world practices in fisheries assessment 

and management, followed by Part 2 which reviews existing data-poor assessment methods and their 

application to provide management advice. The Report concludes with Part 3 which provides two 

examples of the evaluation of the performance of some simple management procedures when applied 

to two data-poor stocks. 
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Part 1  A review of world practices in fisheries assessment methods with some 

comments on their implementation for management  

 

1.1 Current state of world fisheries: a need for improvement 

 

The Mandate 

 

In 1982, the United Nations adopted a “constitution for the oceans” to promote order, stability, 

predictability and security of the of the world’s oceans. Called the United Nations Convention on the 

Law of the Sea (UNCLOS), it provides a legal framework to guide every aspect of the management of 

the oceans and the marine environment (Article 61, UN 1982). In particular, with regard to fisheries 

management, the Convention calls for the adoption of conservation measures to maintain harvested 

species at, or restore them to, levels that produce maximum sustainable yield (MSY). In 1995, the UN 

Fish Stocks Agreement (Article 6, UN 1995) and the FAO Code of Conduct for Responsible Fisheries 

(Article 7, FAO 1995) called for the adoption of a precautionary approach in fisheries management. In 

2002, the World Summit on Sustainable Development (WSSD), held in Johannesburg South Africa, 

called for global marine stocks
1
 to be maintained at, or rebuilt to, MSY levels “with the aim of 

achieving these goals for depleted stocks on an urgent basis and where possible not later than 2015”  

(UN 2002). Some 12 years later, as that recovery period draws to a close, these goals are yet to be 

achieved. 

 

Overall view 

 

According to the United Nations Food and Agriculture Organization (FAO 2010), just over 10% of 

the world’s exploited fish stocks are assessed, albeit not always regularly. These account for about 

80% of the total declared landings, with little or no information being available regarding the stock 

status for the remaining almost 90% of exploited fish resources worldwide. The state of exploitation 

of the world’s fishery resources had remained relatively stable during the 1990’s until about 2004, 

with 25% of the stocks monitored by FAO estimated to be not-fully exploited, while approximately 

half of stocks monitored are deemed fully exploited, producing close to their maximum sustainable 

biological yield, and the remaining 25% are estimated to be overexploited
2
. These estimates have 

                                                      
1
 Throughout this document, “stock” refers to a management unit, rather than a biological entity: a fish stock 

encompasses all fish of a particular species in a defined area which are regulated by a specific management 

agency.  

 
2
 The FAO (2011) currently uses three categories of stock status: not-fully exploited (biomass over 60 percent of 

pre-exploitation biomass), fully exploited (40-60 percent of pre-exploitation biomass) and overexploited (less 

than 40 percent of pre-exploitation biomass). 
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since then been updated to only about 15% of fish stocks considered not-fully exploited in 2009, with 

an increase in overexploited, depleted or recovering stocks to almost 30% of total stocks monitored 

(FAO 2012). 

 

 

 

The economic perspective 

The picture is less positive when seen from an economic perspective. According to a study conducted 

by the FAO and the World Bank (2009), the majority of the world’s marine fish stocks are estimated 

to be economically overfished. This “Sunken Billions” study reports that marine capture fisheries are 

an underperforming global asset, with the difference between potential and actual net economic 

benefits estimated at approximately $50 billion annually ─ equivalent to roughly half the global 

seafood trade. This huge economic loss can likely be recovered by reducing global fishing effort, 

which in turn would lead in time to an increase in productivity and profitability of the fisheries on the 

one hand, and to resource recovery to higher levels of sustainable biological and economic yields on 

the other (World Bank 2009). 

 

The scientific perspective 

 

A study conducted by Worm et al. (2009), which estimated current exploitation rates and stock status 

for 166 assessed fish stocks around the world, confirmed that overfishing remains a problem with 

35% of the stocks in the study estimated to lie in the “overfished and subject to overfishing” quadrant 

of the phase diagram depicted in Figure 1
3
. Of the ten ecosystems studied, average exploitation rates 

had declined to levels corresponding to, or below, maximum sustainable yield (MSY
4
) in seven 

systems. To ensure adequate recovery of the 63% of these stocks estimated to be overfished, fishing 

mortality would need to be decreased somewhat more drastically in order to move stocks from the 

“stock rebuilding” quadrant, located at the bottom-left of the phase diagram, towards more productive 

biomass levels.  

 

This study has recently been updated by Ricard et al. (2012). Of the 214 stocks in the RAM Legacy 

Stock Assessment Database
5
 for which MSY related reference points could be evaluated, most were 

                                                      
3
 A stock is considered overfished when the current biomass is estimated to be lower than that which allows 

maximum sustainable yield (MSY). Overfishing refers to an exploitation rate that would in the long-term 

deplete the stock below MSY level. 
4
 Though it needs to be born in mind that estimates of stock status related to MSY are generally subject to great 

uncertainty as biological reference points such as BMSY are difficult to estimate, even for data-rich stocks. 
5
 The RAM Legacy Stock Assessment Database, inspired by Dr. Ransom A Myers’ stock-recruitment database 

(Myers et al . 1995), is a collection in his memory of assessment results for commercially harvested marine 

species around the world. 
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found to be overfished: 58% of these assessed stocks were estimated to be below
MSYB , the level of 

biomass at which MSY can be achieved, and 30% subject to continued overfishing with fishing 

mortality rates exceeding
MSYF , the exploitation rate required to achieve MSY.  

 

Of the 81 US stocks investigated by Ricard et al., about half are estimated to be overfished with 

biomass below
MSYB . However, with the aim to rebuild these stocks to MSY level, fishing pressure 

has been reduced below
MSYF  with only a third of overfished stocks falling into the upper left-hand 

“overfished and subject to overfishing” quadrant of Figure 1. A similar picture emerges for Canada, 

New Zealand and Australia: the majority of stocks assessed in 2012 study are in a fully exploited or 

rebuilding phase with fishing mortality rates below
MSYF . However, the situation is less optimistic for 

the 48 European stocks investigated in the study. The majority of stocks in this region have been, and 

are currently, biologically overfished with biomass estimated to be below 
MSYB and fishing pressure 

above
MSYF .  

 

These statistics correspond to those of the world’s stocks with sufficient information on which to base 

a stock assessment (i.e. considered data-rich) – reliable estimates of stock status and fishing mortality 

rates for the remaining stocks could not obtained due to lack of data. But what about the majority of 

the world’s fisheries that are not assessed due to lack of data and resources? A recent study by 

Costello et al. (2012) to determine the status of unassessed (data-poor) stocks found that 64% of these 

stocks were overfished with biomass estimated to be below
MSYB .  

 

Given that the goals set out at WSSD (2002) have not been fully achieved in the time allocated, there 

is a need for better, more effective quantitative management for the majority of harvested fish 

resources that are currently assessed. Furthermore, there is also an even greater and pressing need for 

scientific management of the remaining exploited stocks not currently under formal assessment due to 

lack of adequate data.  

 

 

The FAO principles and standards 

 

The FAO Code of Conduct for Responsible Fisheries (1995) is a set of principles and standards to 

ensure the effective conservation, management and development of marine resources. It calls for the 

adoption of management measures focussed on long-term conservation and the sustainable utilisation 

of fish resources. These measures “should be based on the best scientific evidence available and be 

designed to ensure the long-term sustainability of fishery resources at levels which promote the 
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objective of their optimum utilization and maintain their availability for present and future 

generations”. 

 

The overriding objective of fisheries management indicated by these principles is long-term 

sustainable use. Short-term fishery management concerns are secondary and should not compromise 

the main objective. Long-term objectives need to be translated into a management plan, or framework, 

for implementation. Recommendations in the Code pertaining specifically to fisheries management 

(Article 7 of the FAO Code of Conduct) include inter alia: 

 

1) The “best scientific evidence available” should be used to evaluate the current stock status as 

well as the predicted impacts of alternative management actions on the resource: the costs, 

benefits and effects of different management options need to be fully understood prior to 

implementation of a chosen management plan.  

2) Economic overfishing should be avoided by limiting fishing capacity.  

3) Risks and uncertainties associated with alternative management options need to be evaluated 

to promote informed decision making.  

4) Cost-effectiveness and social impact should also be considered when evaluating alternative 

management measures. 

5) On-going (long-term) collection of reliable catch and effort data is a necessary prerequisite 

for sound statistical analyses to inform decision makers.  

6) A precautionary approach to the conservation, management and exploitation of marine stocks 

should be taken. In particular, the Code of Conduct states that the “absence of adequate 

scientific information should not be used as a reason for postponing or failure to take 

conservation and management measures”. 

7) Stock specific target and limit reference points should be determined, as well as actions to be 

taken if these are exceeded.  

8) Once a fisheries management framework is in place, effective fisheries monitoring, control, 

surveillance and enforcement measures should be implemented to ensure compliance. 
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Figure 1: A phase diagram showing quadrants reflecting four possible states of a stock and associated fishing in 

terms of the biomass, B , and fishing mortality rate, F , compared to the levels at which maximum sustainable 

yield (MSY) is produced.  
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1.2 Quantitative fisheries assessment  

 

The traditional and widely used approach for the provision of scientific advice for management (e.g. 

on catch limits) is stock assessment, where statistical and mathematical models which describe the 

underlying resource dynamics are fit to fisheries data to produce estimates of current stock abundance 

(or status, if expressed in terms of some reference level) and sustainable yield.  

 

A variety of stock assessment methods have been developed over the years. Complex age and length 

based assessment models are typically applied to data-rich stocks (or stock complexes) with reliable 

age and/or length composition data obtained from commercial fisheries and research surveys which 

are usually conducted annually. In the absence of reliable age and length composition data, simpler 

age-aggregated models such as production models, fit to one or more indices of abundance, are 

typically used to estimate pertinent management quantities. When trend information is not available, 

simple catch-only methods are sometimes used when assessing data-poor stocks. 

 

The International Council for the Exploration of the Sea (ICES) recently launched the Strategic 

Initiative on Stock Assessment Methods (SISAM) to identify the best methods on which to base 

management advice. This ICES initiative included the classification of stock assessment methods 

according to the amounts and/or types of data required. This classification is intended to guide 

fisheries scientists in selecting the most appropriate stock assessment methods given the data available 

for the stock under consideration. In terms of the SISAM (2012) classification scheme, assessment 

methods are divided into eight core groupings: catch only, time series, biomass dynamics models 

(production models), VPA based models, statistical catch-at-age models and integrated analysis 

models. A short discussion of the different models commonly used for fisheries assessment and 

management is given in Section 1.4.  

 

The choice of assessment method depends largely on the data that are available for the fish stock 

under consideration. For those data-rich resources that constitute just over 10% of commercially 

harvested stocks globally, complex statistical models which rely on the availability of comprehensive 

data sets and high-level scientific expertise are typically preferred. The effort, expertise and time 

required for data-collection and analyses are substantial, and this level of stock assessment is therefore 

reserved for the most valuable fish stocks. Less valuable stocks (either in terms of revenue per ton or 

total tonnage) have less funding available for monitoring, data-collection and analyses. This in turn 

leads to high levels of uncertainty about resource status, and consequently to greater difficulty in 

developing appropriate management recommendations regarding sustainable catch levels.  
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Given fewer quantitative data, there is a need for statistical approaches that admit qualitative 

information. The Bayesian approach allows information from other species and stocks to be 

incorporated into the modelling exercise, thus supplementing quantitative data with qualitative 

information. Generic Bayesian models which incorporate results from meta-analyses have also 

become popular, particularly when dealing with high levels of uncertainty. Such models have the 

advantage drawing on the collective knowledge from similar species/ fisheries and offer a way to deal 

with data-poor stocks. 

 

The following sections provide a brief description of the types of data that are typically required to 

assess the status of a stock (Section 1.3), followed by a summary of the different assessment methods 

according to the ICES categorisation (SISAM 2012) (Section 1.4). 

 

1.3 Data 

 

Fisheries management relies on quantitative stock assessments to obtain estimates of stock status and 

productivity, obtained by fitting a population model (simple or complex, age-aggregated or length- or 

age-structured) to fishery and research (mainly survey) data in order to estimate model parameters and 

other pertinent management quantities. The reliability, or otherwise, of these estimates depends on 

two equally important components: the model (does it describe the underlying population dynamics 

adequately?) and the data (do they provide sufficient information content and contrast to enable 

reliable estimation of model parameters?).  

 

A cornerstone of successful modelling is reliable data (e.g. accurate records of past catches). 

However, for most fish stocks, and particularly for low-value resources, reliable data are in short 

supply.  With the lack of knowledge and greater uncertainty associated with the majority of exploited 

marine stocks, sustainable resource management becomes even more challenging.  

 

Fisheries scientists typically encounter four main sources of uncertainty. The first is model structure 

uncertainty due to the lack of knowledge regarding the underlying fish stock and the model that would 

best describe its population dynamics. A further source of uncertainty is observation error arising 

from errors in sampling and monitoring of the resource, as well as in data capture (see also below). 

Process error arises from natural fluctuations about the model relationships related to population 

dynamics and recruitment.  Finally, for those fish resources where harvest control rules are already in 

place, another important source of uncertainty is implementation error which reflects a lack of 

compliance with catch/effort limits as can arise due to inadequate enforcement, political interference, 

market influences and so forth (Hilborn 1996, Butterworth and Punt 1999, Punt and Donovan 2007). 
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This list of sources of uncertainty omits other key uncertainties regarding the economics of the 

fishery: harvesting costs, market share and saturation, export costs, taxes, levies, fluctuating exchange 

rates, etc. – information which is desirable in order to manage a fishery in an economically optimal 

manner. 

 

As observed by Musick and Bonfil (2005), the data drive the analysis. Applying a complex state-of-

the-art model to noisy and/or biased data is more likely to lead to unreliable management advice than 

applying a very simple model to good quality data (Geromont and Butterworth 2014a). Few reliable 

data are often far more informative than considerable but noisy data, regardless of the complexity of 

the model that is applied. Hilborn and Walters (1992) emphasise the need for better quality data, 

rather than more data or greater precision; they highlight two main concerns that govern the quality of 

data. 

a) Observation error: random errors and biases in sampling and subsequent data analyses 

(arising, for example, from systematic errors in ageing) are very important issues in stock 

assessment and management. Allowance is typically made for random observation error by 

means of bootstrapping the data, or Monte-Carlo techniques. Sensitivity analysis can 

incorporate the effects of bias in the data.  

b) Information content: pertinent parameters can be estimated only from information that is 

embedded in the historical data – if that information is minimal, the parameter estimates will 

be meaningless.  

 

1.3.1 Catch, effort and abundance data  

 

Total annual catches
6
 are particularly important fishery data and are used by nearly all the methods 

described in the next section. These data are typically collected through logbook records (location, 

gear and catch), observers (present on commercial fishing vessels) and dockside monitoring 

(commercial landings data).  

 

Indices of abundance of the stock are one of the primary indicators for the status of a fishery. 

Abundance indices can be derived from either the commercial catch rate data (CPUE) or from 

scientific surveys. Index data obtained from fishery independent scientific surveys are often preferred 

as they provide a relative index of abundance which is hopefully unbiased by design, but typically 

have high variance. In contrast, the large amount of data available render CPUE indices of low 

                                                      
6
 Throughout this review, the total catch is assumed to be equivalent to the total removals (landings plus 

discards), unless otherwise stated. 
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variance, but GLM standardisation techniques may not be able to remove all sources of bias arising 

from changes in fishing patterns over time. Methods relying on at least one reliable index of 

abundance include biomass dynamics models as well as the simple empirical catch control rules used 

when following an MP approach. 

 

1.3.2 Size/length composition data 

 

Catch composition data provide information regarding stock composition: the relative abundance of 

different age classes or cohorts within a stock. Ageing is conducted to obtain an age-length key 

(ALK) which provides estimates of the proportion of each age group in each length class each year. 

These data are incorporated into age/length based models to provide estimates of fishing mortality 

rates, selectivity, stock-recruitment relationship parameters etc. Methods that incorporate age and/or 

length composition data include Virtual Population Analysis (VPA), statistical catch-at-age (SCAA) 

models, and Integrated Analysis (IA). 

 

1.3.3 Biological data 

 

Biological data such as size/age at maturity, fecundity, growth, spawning and feeding information are 

collected during fishery independent surveys or other sampling programs related to the fishing 

operations. The biological characteristics of a stock may change over time due to environmental 

factors so that continuing sampling programs are required. Reliable biological data are important for 

age- and length-based models.  

 

1.3.4 Other data 

 

Economic and social data are required if an integrated approach to management is followed where 

biological, economic and social objectives are incorporated in that approach. These data are typically 

not included into stock assessment models, but rather introduced at the resource management stage, 

for example within an integrated Management Strategy Evaluation (MSE) or when a Management 

Procedure (MP) approach is adopted. 
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1.4 Methods and models  

 

The choice of “best” population model with which to assess a stock depends not only on the scientific 

expertise at hand, but more importantly on the type and information content of the data that are 

available. The Strategic Initiative on Stock Assessment Methods (SISAM 2012) was recently 

launched to aid scientists in selecting the most appropriate model given the data available. To 

compare the efficacy of the different methods and draw quantitative conclusions, alternative 

assessment methods were chosen from the main model categories listed in the sections below, and 

applied to simulated data generated for a number of key stocks. The simulation-based evaluation of 

model performance showed that the most appropriate model category depends on the type of data 

available, and the most appropriate model configuration within a model category depends on the 

information content of the data. Some initial conclusions drawn from the SISAM workshop,  

summarised by Deroba et al. (2014), are as follows. 

a) Different models are consistent with regard to biomass trends, rather than scale of absolute 

estimates. 

b) Similar model types behave similarly: the choice of model type had the biggest effect on 

consistency across models. 

c) Biomass estimates in the most recent years of time-series were least robust to the application 

of different models.  

d) Model uncertainty has important implications when choosing between a “best fit” or 

ensemble approach. 

e) Simulation testing (both self-testing and cross-testing of models
7
) is useful. 

 

A non-comprehensive list of popular stock assessment methods follows below, classified according to 

data availability, and generally in terms of the broad categories suggested by SISAM (2012). 

 

1.4.1 Catch only methods  

 

Catch only methods rely on the key simplifying assumption that trends in stock abundance can be 

tracked by trends in total annual catches: catches will at first increase as the fishery develops and later 

decrease once the stock abundance becomes reduced by exploitation. Generally, no allowance is made 

for changes in catch arising independent of stock size trends, such as changes in targeting, gear, 

market influences and fishing regulations.  

 

                                                      
7
 A self-test is when the data for the simulation test are generated from the same model used for the assessment. 

In a cross-test these two models differ. 
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Examples include studies by Froese and Kesner-Reyes (2002), Worm et al. (2006), Pauly (2007) and 

Zeller et al. (2008), who used their various approaches to assess an extensive number of stocks based 

on their catch histories alone. However, these particular studies were later argued by Branch et al. 

(2011) and Daan et al. (2011) to be technically and/or conceptually flawed, resulting in overly-

pessimistic estimates of stock status.  

 

Wetzel and Punt (2011) demonstrated that the success of the catch-only method simulation tested in 

their study relies on good prior (qualitative) knowledge of current depletion – a major drawback for 

data-poor stocks as such information is unlikely to be available. A simulation study conducted by 

Carruthers et al. (2012) to evaluate and compare the reliability of a selection of catch-only methods 

showed that additional quantitative or qualitative information is required to obtain reliable estimates 

of stock status: methods based on catch series data resulted in the misclassification of stocks about 

two-thirds of the time. In the absence of additional fishery data, catch-only methods are prone to 

giving overly-pessimistic estimates of stock status.  

 

Data requirements: A time-series of total removals (landings and discards) over an extended period 

that encompasses the development of the fishery (typically more than 10 years), and possibly some 

qualitative information (reflected by prior distributions) for current depletion and some biological 

parameters (e.g. the natural mortality rate). 

 

Example of models: 

 Depletion Corrected Average Catch (DCAC): A method developed by MacCall (2009) for 

estimating sustainable yields for data-poor fisheries.  Based on the assumption that the 

historic mean catch over some time period is sustainable if abundance remained unchanged, 

the model adjusts this average upwards or downwards with an increase or decrease in 

abundance index (see Section 2.3.5). In addition to an historical catch series, qualitative 

information is required for pertinent biological parameters such as natural mortality rate. This 

method provides an estimate of potential yield which is likely to be sustainable and less than 

MSY for data-poor fisheries. The method is applicable to long-lived species with low natural 

mortality rates (less than about 0.2yr
-1

). The software is available from the NOAA Fisheries 

Toolbox [nft.nefsc.noaa.gov/DCAC.html]. 

 Depletion-Based Stock Reduction Analysis (DB-SRA): Developed by Dick and MacCall 

2011, this method is a combination of the DCAC and stock reduction methods, and uses each 

year’s catch in a delay-difference production model (see Section 2.4.5). Production is 

assumed to be lagged by the age to maturity. Input data include a time series of annual 

catches, as well as knowledge of life-history parameters such as the natural mortality rate, M 

and age-at-maturity. 



 

 17 

 Catch-MSY: This method was developed by Martell and Froese (2013) to obtain MSY 

estimates (and distributions) using a Schaefer production model (see Section 2.4.2), but here 

in the absence of an index of abundance. Input data comprise total annual catches (discards 

included) and the specification of prior distributions for the pre-exploitation biomass, K, and 

the intrinsic growth rate, r, in addition to knowledge regarding a plausible range for current 

depletion. 

 

 

Advantages: These models are typically used for data-poor stocks when other assessment methods fail 

due to lack of data. 

 

Disadvantages: Catch-only methods rely on key simplifying assumptions that are often difficult to 

meet. Furthermore, they rely on the incorporation of qualitative information, the reliability of which 

can be questionable. When very few quantitative data are incorporated into the computations, the 

qualitative information becomes the driving force in the estimation of model parameters (e.g. the 

priors in a Bayesian analysis may hardly be informed by other data) which renders parameter 

estimates and the subsequent management quantities derived of little value.  

 

1.4.2 Time-series  

 

Time-series methods do not model population dynamics explicitly, but rather depend on trends in the 

catch and or abundance time-series directly. Given adequate information content in a time series, and 

assuming that time-series data forthcoming in the future will be generated by the same mechanisms as 

the historic data, these simple methods can be used to track trends in population biomass. However 

they do not provide estimates of stock abundance in absolute terms.  

 

The simple algorithms underlying these methods are sometimes applied within a formal Management 

Procedure (MP) approach (Section 3.1), following rigorous simulation trials to show adequate 

robustness to uncertainty across a suite of (usually age-structured) population models that describe 

plausible states of nature. For example, simple algorithms based on trends or thresholds in abundance 

indices have been used in harvest control rules (HCRs) for the management of high-value data-rich 

stocks in South Africa (Geromont et al. 1999, De Oliveira 2003, De Oliveira and Butterworth 2004, 

Rademeyer 2012) and Namibia (Butterworth and Geromont 2001). In Australia, empirical HCRs for 

the multi-species Eastern Tuna and Billfish fishery (ETBF) have been developed to set the annual 

TAEs (Campbell et al. 2007). Empirical HCRs that use trend in CPUE data to scale annual TACs for 

data-poor stocks in the multi-species Southern and Eastern scalefish and shark fishery (SESSF) are 
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described in Wayte (2009). Empirical HCRs based on the CPUE time series have been adopted to 

manage the rock lobster fisheries in New Zealand (Starr et al. 1997). ICES has recently developed an 

index-based HCR for category 3 (data-limited) stocks (ICES 2013a) 

 

Data requirements: A time series of total annual catches, at least one relative index of abundance 

(CPUE and/or survey) and/or mean length/mass of catch. 

 

Examples of models: 

 An Index Method (AIM): Developed by Rago, this models the relationship between catch and 

an abundance time series in order to estimate the catchability coefficient, q. It uses a linear 

model of population growth to measure stock response to different levels of fishing mortality. 

Given an estimate of the catchability coefficient associated with a relative index of 

abundance, this method can be used to predict the level of relative fishing mortality at which 

the population is likely to be stable (Honey et al. 2010). The software is available from the 

NOAA Fisheries Toolbox [nft.nefsc.noaa.gov/AIM.html] 

 

Index-based MPs:  

 

 Threshold-type MPs adjust the TAC up or down in re-specified steps depending on whether 

threshold values for certain data are crossed. The idea is that unless there is a strong 

quantitative signal in the data, the TAC is better left where it is so as to avoid the possibility 

of tracking noise rather than signal in a data-poor situation. When an index of abundance is 

not available, for example in data-limited applications, simple algorithms based on the mean 

length of fish caught can be taken to be an indirect index of abundance as illustrated by 

Geromont and Butterworth (2014a). 

 

 Slope-type MPs utilise the trend in a limited subset of data (typically the most recent four or 

five years of, say, survey biomass estimates) for input. The annual TAC is simply moved up 

or down from where it was the previous year, depending on whether the estimated trend is 

positive or negative (Butterworth and Geromont 2001).  

 

 Target-type MPs move the resource abundance towards a pre-specified target level for some 

direct or indirect abundance index (survey, CPUE or mean length of catch). The future TAC 

is adjusted up or down each year depending on whether the average of the most recent 

surveys is above or below the target survey level (Tier 4 rules in Wayte 2009, Geromont and 

Butterworth 2014b). 
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Advantages: These empirical algorithms are simple to apply and easy for all stakeholders in the 

fishery to understand. Increases/decreases in TAC/TAE follow trends (possibly in relation to 

thresholds) in an intuitive manner. These simple techniques require few data and offer efficient 

management tools. Within a formal MP framework, management advice typically includes clear risk-

yield trade-offs associated with alternative management actions.   

 

Disadvantages: The key assumption that underpins these methods is that the CPUE or surveys 

provide a reliable (unbiased) index of abundance. Uninformative data (too much noise in the 

abundance index), or systematic bias in the data (for example an undetected increase in catchability), 

render these methods unreliable. Estimates of stock status are not provided by these methods. 

1.4.3 Biomass dynamics models  

 

The simplest stock assessment models commonly used, these describe the dynamics of the stock in 

terms of biomass rather than numbers at age. They are also called surplus production models. The 

production function can take many forms e.g. Schaefer, Fox and Pella-Tomlinson, although the 

Schaefer model is the best known (Schaefer 1954, Fox 1970, Pella and Tomlinson 1969, Schnute 

1985). Unlike the age-structured models described below, these approaches model the net effects of 

recruitment, growth and mortality based on information on biomass and catch trends (Hilborn and 

Walters 1992). As such the data requirements for these models include a time-series of total catches, 

and one or more time series of relative abundance data (such as CPUE or survey index of relative 

abundance). 

 

Although simple and relying on few data, Ludwig and Walters (1985) showed that the biomass 

dynamic models tested generally gave as good, or better, estimates of management parameters than 

more complex models. They concluded that simple biomass dynamic models should be used in stock 

assessments based on catch and effort data even when more realistic and structurally correct models 

are available, and that the choice depends on the contrast in the data rather than on which model 

structure is more realistic.  

 

Biomass dynamics models have been widely used as the primary basis for management advice for 

several marine stocks, for example tuna stocks in the Atlantic under ICCAT management.  

 

Data requirements: Historical total catches and a relative index of abundance (CPUE or survey) 

 

Examples of models:  
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 A Surplus-Production model Incorporating Covariates (ASPIC): The ASPIC framework 

provides a flexible format for a non-equilibrium biomass production model (Prager 1992, 

1994). It fits several forms of surplus-production model (Schaefer, Fox and Pella-Tomlinson) 

to catch and abundance index data. Estimates of precision are obtained using bootstrapping. 

The software is available from the NOAA Fisheries Toolbox 

[nft.nefsc.noaa.gox/ASPIC.html] 

 

 Bayesian Surplus Production (BSP) model: This fits a Schaefer or Fletcher/Schaefer model to 

CPUE data using the Sampling/Importance Resampling (SIR) algorithm. Bayesian prior 

distributions can be defined for estimable parameters. Input data are total annual catches and 

one or more index of abundance, with associated CVs if available (McAllister and Babcock 

2006). 

 

Advantages: The simplicity of these models, combined with the modest data requirements, offer a 

cost-efficient fisheries management option suitable for longer lived species. These models are easy to 

understand and code, with a limited number of estimable parameters. Standard output includes 

management quantities such as current biomass (and stock status) as well as typical management 

reference point estimates. 

 

Disadvantages: These models do not include age-structure and ignore processes such as recruitment, 

natural mortality and individual growth. This lack of biological reality excludes quantitative and 

qualitative biological (age/length) data that might be available for the species. The success, or 

otherwise, of these methods depend on the quality of the data and the information content (Hilborn 

and Walters 1992): without adequate contrast in the time-series, the estimators cannot distinguish 

between different possible states of nature. Long time-series, with observations above and below

MSYB  and periods over which the index of abundance increases, are required (SISAM 2012). 

 

1.4.4 Delay-difference models  

 

These partially age-structured models lie somewhere between the simple age-aggregated biomass 

dynamics models discussed in the section above and the fully age- length-disaggregated models that 

follow. The dynamics of the population are represented in terms of equations involving different 

components of the population. Biological information of the species is incorporated into a simplified 

model by making some key assumptions about survival, growth and recruitment. Two life stages are 

typically assumed: one for the pre-recruitment fish and one for the exploitable portion of the stocks. 

While these models provide a more biologically realistic representation of the dynamics of the fish 
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stock than the surplus production models described above, they typically still rely on a limited data set 

only (total catches and, for example, an index of abundance consisting of a recruitment index and a 

recruited (adult) index).  

 

A delay-difference model has been applied to commercial catch and effort data for tiger prawns in the 

Australian Northern Prawn Fishery to take account of the weekly timescale of the population 

dynamics (Dichmont et al. 2003). Other applications include a lagged recruitment, survival and 

growth (LRSG) model used for small coastal sharks on the east coast of the United States (Cortés 

2002),  and a two-stage biomass dynamic model (CBBM) to assess anchovy in the Bay of Biscay 

(Ibaibarriaga et al. 2008 and 2011). 

 

Delay-difference models are dependent on key simplifying assumptions, and Hilborn and Walters 

(1992) advise caution when attempting to derive estimates for population parameters from simple 

time series data. Punt and Hilborn (1996) show that simpler biomass dynamic models perform better 

that delay-difference models and recommend that age-structured dynamic models be used if a higher 

level of complexity is sought. Indeed, these models are seldom used at present as recent advances in 

computing power have allowed for more sophisticated and flexible age-structured models to be 

implemented efficiently. 

 

Data requirements: A time series of total annual catches and an index of abundance, in addition to 

quantitative information (perhaps in the form of a prior distributions) for current depletion and 

biological data on growth (von Bertalanffy parameter estimates) and natural mortality. 

 

Examples of models:  

 The Deriso Delay-Difference Model: The population dynamics are described by an age-

structured model with knife edge recruitment (Deriso 1980). A stock-recruitment function is 

incorporated in a simple difference equation to provide a framework to use catch and effort 

data in conjunction with information on growth, survival and recruitment. 

 Lagged recruitment, survival and growth (LRSG): A simple approximation of the Deriso 

model with biomass in each year given by the sum of the surviving biomass and recruitment 

less the catch of the previous year (Hilborn and Mangel 1997).  

 The Collie-Sissenwine Analysis (CSA): A two-stage stock assessment model to estimate 

abundance, fishing mortality and recruitment from total annual catches and survey data with 

associated CVs (Collie and Sissenwine 1983). The two stages are comprised of “recruits” and 

“post-recruits”, with both groups assumed to be available to the fishery. Model parameters are 
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estimated by maximum likelihood. The software is available from the NOAA toolbox 

[nft.nefsc.noaa.gov/CSA.html] 

 

Advantages: These models are biologically more realistic than biomass dynamic models and simpler 

to implement than a fully age-structured approach with fewer parameters to estimate. Their main 

advantage lies in their ability to incorporate important population dynamics processes in a simple 

equation while allowing for time-lags due to growth and recruitment. Relatively few data are required.  

 

Disadvantages: The same disadvantages as for biomass dynamics models apply: good quality and 

contrast in data are essential for successful model parameter estimation. Another disadvantage of 

these models is the assumption of a time-invariant catchability parameter, q: when fishing patterns 

change, so will selectivity at age, invalidating this assumption. Fully age-structured models are 

needed to deal with this. 

 

1.4.5 Age-structured production models  

 

Age-structured production models (ASPMs) present a more advanced, biologically realistic, form of 

the production models described earlier by taking explicit account of biological processes such as 

recruitment and growth, while avoiding the full complexity of the age-structured models described 

later. In contrast to the age-aggregated surplus production models, these models are fully age-

structured and incorporate a stock-recruitment relationship to predict the number of recruits each year. 

However catch-at-age data are not essential for parameter estimation purposes (usually only the pre-

exploitation biomass, K, and the steepness of the stock-recruitment function, h, are estimated). In the 

absence of age composition data, the natural mortality rate and fishing selectivity vector are input 

(being assumed to be known without error). Various forms of the stock-recruitment relationship can 

be used, with the Beverton-Holt form generally preferred. The approach can accommodate several 

fishing fleets. These models can easily be extended to incorporate catch-at-age information, in this 

manner evolving into the more complex statistical catch-at-age type models. This extension allows for 

process error to be incorporated by allowing for annual fluctuations about the deterministic stock-

recruitment relationship. 

 

De Bruyn et al. (2012) compared the performance of an age-structured production model with a non-

equilibrium production model applied to albacore tuna in the South Atlantic. They concluded that the 

benefit of incorporating additional age-structure into the stock assessment was relatively small, and 

recommended that the simpler surplus production model be used for management advice purposes 
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instead. However, for data-rich stocks with good quality age composition data, the more complex 

form of the ASPM is generally preferred. 

 

Data requirements: Total historical catches and at least one index of abundance with an associated 

fishing selectivity-at-age vector (usually in the form of a logistic ogive), as well as some biological 

information (values for natural mortality, growth and fecundity-at-age). 

 

Examples of models:  

 Age-structured production model (ASPM): Many ad hoc versions of ASPM have been coded. 

Restrepo and Legault (1998) implemented an age-structured production model with 

stochasticity in recruitment to assess western Atlantic bluefin tuna. 

 

 Stochastic stock reduction analysis (SRA): A stochastic age structured production model with 

a Beverton-Holt function that simulates changes in biomass over time by subtracting 

mortality and adding recruits (Walters et al. 2006). 

 

 

 

Advantages: These models are able to represent the underlying population age-structure while relying 

on few age-aggregated data, in addition to some biological information on growth and natural 

mortality. The biomass estimates are “real”, so that independent estimates of biomass in absolute 

terms (e.g. from acoustic or egg-production surveys) can be used in the model fitting or to provide a 

reality check. Costly catch-at-age data are not required which makes these models a cost-effective 

assessment option. Model complexity can be added to the basic ASPM as age-disaggregated data 

become available. Multi-fleets applications are possible. A Bayesian approach can readily be 

incorporated by defining prior distributions for key model parameters to allow for model uncertainty. 

 

Disadvantages: Care must be taken that the model does not become over-parameterised. In the 

absence age-composition data, information on key parameters, such as selectivity-at-age, need to be 

input as there is hardly any information content from which to estimate them, or to update their prior 

distributions.  

 

1.4.6 Virtual population Analysis  

 

Virtual population analysis (VPA), developed by Gulland in 1965, is widely used as a basis for 

fisheries management advice for data-rich stocks. The VPA approach entails reconstructing the 
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population numbers and fishing mortality matrices for each year and age of the assessment period 

from a full (comprehensive) set of catch-at-age data and the natural mortality rate. Also termed cohort 

analysis, it makes use of a recursive algorithm that reconstructs each cohort backwards in time from 

the current year back to the year of recruitment. Population numbers for the most recent years are not 

well determined due to truncated cohorts, which can result in highly uncertain estimates of current 

biomass. To estimate the sizes of the cohorts that currently survive in the fishery, simplifying 

assumptions about terminal fishing mortality must be made. This approach relies on a few key 

simplifying assumptions: a) no fish survive past a certain age (though more complex formulations can 

incorporate a plus-group, b) exact knowledge of the natural mortality rate and catches-at-age, and c) 

no immigration or emigration (Hilborn and Walters 1992). Various estimation methods, sometimes 

called “tuning”, are used to deal with truncated, or incomplete, cohorts in the terminal years.  

 

This assessment approach relies on annual ageing of catch data. VPA methods are not suitable for 

fisheries with noisy age composition data, and cannot be applied if there are gaps in the ageing time 

series. Because it is very data demanding and costly, with annual ageing of large catch samples a 

requirement, VPA has generally been reserved for high value data-rich resources. 

 

VPA methods have been used extensively as the basis for scientific management advice for many 

data-rich fish stocks globally, in particular by Argentina, Europe and Canada (Ricard et al. 2012), as 

well as by international fisheries agencies such as ICES and ICCAT.  

 

Examples of models:  

 

 ADAPT VPA: Also known as tuned VPA (Gavaris 1988), the catch-at-age data are 

supplemented by one or more indices of abundance, called tuning indices, to facilitate the 

estimation of the sizes of the most recent truncated cohorts. Model parameters are estimated 

by minimising the sum-of-squares over the number of indices of abundance. The two area 

VPA software package (VPA-2BOX) is based on VPA ADAPT, and has the added capability 

of analysing two different stocks simultaneously. This software is available from the NOAA 

Fisheries Toolbox [nft.nefsc.noaa.gov/VPA2BOX.html]. 

 

 Extended Survivors Analysis (XSA): Widely used to asses ICES stocks, XSA (Shepherd 

1999) differs from VPA ADAPT which uses formal minimisation of the objective function to 

estimate population numbers. Instead, population numbers-at-age are derived by applying an 

ad hoc algorithm iteratively until convergence is achieved. The tuning is based on age-

disaggregated abundance indices.  
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Data requirements: Catch-at-age data by number for the entire assessment period, along with 

population and catch weights-at-age and one or possibly more indices of abundance.  

 

Advantages: Assumptions regarding the stock-recruitment relationship are avoided. Given reliable 

high quality catch-at-age data, good estimates of recruitment can be obtained directly from the data 

for subsequent use for projections and management advice. 

 

Disadvantages: A complete set of catch-at-age data is required for VPA analyses: annual ageing of 

large samples of fish from the catch is costly and labour intensive. Catch-at-age data are assumed to 

be known without error, which is often not realistic: such observation error (in particular systematic 

biases in ageing), if substantial, can lead to dubious estimates of population numbers. There is seldom 

sufficient information content in the data for the natural mortality rate to be estimated; it therefore has 

to be fixed on input which may lead to the systematic under- or over-estimation of cohort sizes. This 

problem is exacerbated when fishing mortality is relatively low and the total mortality is dominated 

by the component due to natural mortality.  

 

1.4.7  Statistical catch-at-age methods 

 

Statistical catch-at-age analysis (SCAA), a more complex stochastic form of the traditional ASPM 

discussed earlier, incorporates age-disaggregated data from the commercial fleets and surveys (if 

available) into the analysis. SCAA provides an elegant statistical framework to incorporate variability 

in the data and various population processes (Fournier and Archibald 1982, Deriso et al. 1985): 

observation error in catch-at-age data and relative indices of abundance, and process error (variability 

in recruitment and mortality).  

 

Compared to VPA which is summarised above, SCAA methods are more flexible and do not require a 

complete set of age data; they are able to accommodate gaps in the data. These methods provide a 

statistical framework to estimate population numbers-at-age given incomplete cohort data, and may 

allow for the estimation of natural mortality rate if there is sufficient contrast in the data. Generally, 

SCAA methods are considered a subset of integrated analyses; however they are typically simpler to 

apply than the more complex Integrated Analysis (IA) models described in the next section.  

 

The simplest SCAA methods assume time-invariant fishing selectivity-at-age. For situations where 

there are indications of change in selectivity, data are typically grouped into blocks corresponding to 

periods of different selectivity, which increases the number of parameters and usually introduces ad 

hoc restrictions on the extent to which their values may change between blocks. The main problem 
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with these flexible, highly parameterised statistical models is the danger of over-

parameterisation/over-fitting: given the limitations of the input data, there is frequently not enough 

information content to support the estimation of an extensive range of free parameters. Statistical 

time-series analysis presents a solution to dealing with parameters that change over time by modelling 

such changes as random effects, thereby reducing the number of estimable parameters, with the added 

benefit of providing objective estimates of the variance of the extent of the changes.   

 

Statistical catch-at-age models are commonly used to assess data-rich stocks on the west coast of 

North America, Australia, New Zealand and South Africa, as well as in international fisheries 

management organisations such as ICES, CCAMLR, CCSBT and IWC.  

 

Examples of models/software:  

 ASAP: ASAP is a SCAA model developed by NOAA that assumes separability of fishing 

mortality into year and age components to estimate population sizes given observed catches, 

catch-at-age, and indices of abundance. Discards can be treated explicitly. The code is 

available from the NOAA Fisheries Toolbox [nft.nefsc.noaa.gov/ASAP.html]. 

 

 State-space Assessment Model (SAM): This random-effects model allows for time-variant 

effects, such as gradual changes in fishing selectivity, while keeping the number of model 

parameters to a minimum compared to full parametric statistical assessment models (Nielsen 

and Berg 2014). Software packages such as AD Model Builder (ADMB), developed by David 

Fournier (Fournier et al. 2012), facilitate elegant estimation of random effects within a 

frequentist framework using Laplace approximation.  

 

Data requirements: Total annual catches (including discards), some catch-at-age data and an index of 

abundance such as CPUE or survey. In addition, qualitative information about the biological 

parameters is useful to define prior distributions if a Bayesian approach is followed. 

 

Advantages: These models are very flexible and can incorporate as much, or as little, age data as are 

available from various of sources (commercial and/or survey). Unlike VPA methods, catches-at-age 

are not assumed to be known exactly and sampling variability is incorporated into the model. 

Depending on data availability, these models can be as simple as ASPMs, with few estimable 

parameters, or as complex as IA, with many model parameters (e.g. to describe transient effects). 

 

Disadvantages: These methods are complex and require expertise in the fields of mathematics and 

statistics to understand and implement wisely. Typically, they are used for high-value data-rich stocks 

only, although flexibility in terms of data requirements may render these models useful in data-limited 
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cases. Over-parameterisation can be a problem for such flexible and potentially powerful methods: 

lack of sufficient data, or lack of contrast in the data, can render extensive parameter estimation 

difficult, if not impossible. Auxiliary information may be required (being incorporated as Bayesian 

priors), or alternatively the number of free parameters needs to be reduced through use of simplifying 

assumptions. As with other types of age-structured models (e.g. ASPM and VPA), SCAA cannot 

easily distinguish between the confounding effects of natural mortality, M, increases in M with age, 

and asymptotically flat or domed selectivity (Butterworth et al. In press). 

 

1.4.8 Integrated analyses  

 

Integrated analysis (IA) provides a flexible statistical framework to model the population dynamics of 

fish stocks using diverse fishery and survey data, both age and length-based, as well as age-

aggregated. SCAA models, summarised in the section above, are generally seen as simpler versions of 

these fully integrated methods. These models can cater for many other types of data as well, and in 

their original format without requiring pre-processing, for example the incorporation of length data 

and age-length keys directly into the likelihood. IA models are highly general (in terms of the types of 

data that can be incorporated), flexible (in terms of the estimable parameters and management 

quantities output) and powerful (efficient estimation of large numbers of parameters through use of 

appropriate software such as ADMB).  

 

Methot et al. (2012) divide this category of models into two sub-categories: a) models with length-

structured population dynamics, and b) those with age-structured population dynamics, which they 

describe as follows. 

 

a) Length structured dynamics using a length-based transition matrix: 

The main advantage, particularly for low-value fisheries, is that length data are easier and less 

costly to collect than age data. However, length-based models do not perform as well as age-

based methods and generally result in less precise estimates of recruitment and mortality 

compared to models which incorporate age data. This is because, given distributions for 

length-at-age that are often wider than average interannual growth, the information on cohort 

strengths is diluted as the different cohorts overlap each other across different length groups. 

From a management point of view, the lack of accuracy associated with length-based methods 

can lead to high levels of over-exploitation of the stock unless a very precautionary approach 

is adopted (Hogarth et al. 2006). Length-based models are typically used for lobsters (and 

other crustacean) fisheries, tropical fish stocks, as well as low-value (data-poor) fisheries for 

which large ageing programs are too costly.  
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b) Age-structured dynamics:  These models generally cater for multiple areas and growth 

patterns, as well as for time-dependent effects in population processes. Growth is estimated 

internally using age-at-length data. As for SCAA, natural mortality rate may be an estimable 

(free) parameter and recruitment is modelled using a stock-recruitment relationship and 

allowing for variations about the chosen function. Unlike SCAA, integrated analysis allows 

for the incorporation of unprocessed data into the model. Taken to one extreme, and given 

high quality catch-at-age data, this type of model can be configured to resemble a VPA model 

by allowing for time-dependent effects in fishing selectivity. At the other extreme, when the 

data do not support the estimation of a comprehensive set of model parameters and key 

parameters need to be fixed, the IA model can be constrained to become a simple stochastic 

age-structured production model. Therefore, IA models have the flexibility to be as simple or 

complex as the data dictate.  

 

IA is gaining popularity worldwide due to the flexibility with which age and/or length composition 

data may be incorporated into the model. These methods are applied extensively in North America, 

Australia, New Zealand and to a lesser extent to the stocks assessed by ICES. 

  

Data requirements: Total annual catches, one or more indices of abundance (CPUE or survey), and 

some age- and/or length-composition data (need not be a comprehensive data set in the sense that 

gaps in the time-series can be accommodated). In addition, auxiliary information, such as age-at-

length data (to estimate growth) and tagging data (to estimate mortality and possibly its age-

dependence) can also be incorporated.  

 

Examples of models:  

 

 Stock Synthesis (SS): Developed by Methot (1989, 1990, 2012), SS is an integrated statistical 

catch-at-age model that can incorporate catch data, survey indices and age and length 

composition data The latest version, SS3, includes additional options for modelling time-

varying parameters and enhanced selectivity features. The software, written in C++ using the 

ADMB library is available from the NOAA Fisheries Toolbox 

[NFT.NEFST.NOAA.GOV/stock_synthesis_3.htm]. 

 

 Colerain is an Excel-based general statistical age- and sex-structured multi-fleet model 

developed by Hilborn et al. (2001) which can incorporate different sources of information 

from the fishery and/or surveys. Prior information for model parameters can also be specified. 

This model allows for temporal changes in the selectivity and catchability of the fishing fleet. 

The software is available at [fish.washington.edu/research/colerain]. 
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 C++ Algorithmic stock Assessment Laboratory (CASAL) is an advanced software package 

developed by the National Institute of Water and Atmospheric Research (NIWA) in New 

Zealand for fisheries assessment and management (Bull et al. 2012). It is a flexible age- or 

length-structured stock assessment model that can be applied to single or multiple stocks, 

areas, and/or gears, and fitted to data from many different sources. This package is used to 

assess most of New Zealand's fish stocks, including deepwater (e.g. orange roughy), middle 

depth (e.g. hoki), inshore (e.g. snapper), and shellfish fisheries. It has also been used to assess 

Patagonian and Antarctic toothfish, and broadbill swordfish fisheries. The software is 

available at [www.niwa.co.nz/our-science/fisheries/tools/casal]. 

 

 MULTIFAN-CL (Fournier et al. 1990, 1998) is a statistical length-based, age-structured 

model that provides an integrated method of estimating catch-at-age composition, growth and 

other parameters from catch and effort time series and length-frequency data. This software is 

aimed at fisheries where length-frequency sampling data are available but in which large-

scale age sampling of catches is either too costly or not feasible. This software has been used 

to assess the status of Western and Central Pacific tunas (Hampton and Fournier 2001). The 

software is available at [www.multifan-cl.org]. 

 

Advantages: An extensive variety of diverse data can be incorporated in its original format, avoiding 

pre-processing and its attendant problems. Models are highly flexible and can be configured to suit 

most situations. 

 

Disadvantages:  These models can be very complex and are typically only fully developed, 

understood and applied by highly trained statisticians/mathematicians – a general shortage of the 

required expertise and skill set has therefore resulted in limited applications. The temptation to over-

complicate the model exists, thereby masking the key features of the stock dynamics. No limitations 

are placed on input data and an all-inclusive approach can be taken regardless of the information 

content of the data. The quality of the data may not support the estimation of all parameters and 

effects desired, and care must be taken as subsequent management advice based on over-

parameterised models can be dubious at best. 
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1.4.9 Other 

1.4.9.1 Yield per Recruit 

 

This steady state model was first developed by Beverton and Holt (1957) to determine the average 

yield from a single recruit at different levels of fishing mortality, F, given an age at first capture or a 

selectivity curve. Its utility is based on the assumption that average recruitment will continue 

regardless of the level of fishing mortality. 

This model incorporates some age-structure information in terms of the growth curve and natural 

mortality. It is particularly useful to ascertain, for example, if fish are being caught from the right age 

to achieve optimal yield, and to estimate the optimal fishing mortality for a stock. It is not generally 

used in isolation to serve as a basis for management advice, but rather together with the outputs from 

an age-structured assessment, for example to estimate reference points for management advice 

purposes.  

However, in the absence of reliable time series data, information on demographic properties (growth, 

mortality, maturity) may be available for otherwise data-poor species as this allows for the estimation 

of management targets using per-recruit methods. An example of this method applied in isolation is 

the South African linefish stocks, considered extremely datapoor, for which management reference 

points have in the past been estimated using per-recruit analysis (Griffiths et al. 1999). However, the 

reliability of these estimates is questionable as they rely in turn on estimates of natural mortality 

whose accuracy is debatable. 

Data requirements: Biological information pertaining to natural mortality rate and growth information 

(von Bertalanffy growth function parameters), as well as fishing (gear) selectivity. 

Advantages: Yield-per-recruit models are simple and rely on few data (no catch or effort data). These 

models are useful in terms of direct fishery management recommendations on the optimal size of 

animals caught to avoid growth overfishing and the optimal fishing mortality to maximise yield. 

Disadvantages: These models do not provide estimates of stock status, but rather static management 

targets and reference points. Yield per recruit methods rely on estimates of natural mortality that are 

usually not well determined, even for data-rich stocks. In terms of generating management advice, 

care must be taken when using these models to control catch (TAC) or fishing effort (TAE). Yield per 

recruit methods exclude a stock-recruitment relationship (no density dependence) and TAC advice 

based on multiplying the yield per recruit by past average recruitment may fail in circumstances 

where high fishing pressure causes recruitment overfishing. The problem with generating TAE advice 

based on this method is the lack of a direct estimate for the catchability coefficient, q, required to 
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convert fishing mortality rate to effort.    Therefore, used in isolation, these methods can result in 

management advice which is not very reliable.  

 

1.4.9.2 Meta-analyses 

 

This approach uses formal statistical methods for the estimation of parameter distributions based on 

data from a group of stocks (e.g. stock recruitment parameters and natural mortality rates), and can 

readily be applied to data stored in some global database. Such analyses have important implications 

for data-poor fisheries for which traditional assessments are not possible due to lack of data. They are 

particularly useful for Bayesian-type analyses where prior distributions can be informed by the 

distribution of the parameter provided by the meta-analysis involving other stocks of the same and/or 

similar species. 

The RAM Legacy Stock Assessment Database, a development of Ransom A. Myer’s Stock-

Recruitment Database (Myers et al. 1995), provides a database for stock assessment results for 

commercially harvested fish stocks around the world from 21 national and international management 

agencies for a total of 331 stocks, including nine of the world’s ten largest fisheries. These are 

distributed across 27 large marine ecosystems in the Atlantic, Pacific, Indian, Arctic and Antarctic 

Oceans (Ricard et al. 2012). The database provides data (e.g. catch time series) and assessment results 

(including biomass, recruits and fishing mortality time series, life history information as well as 

biological reference points) for data-rich stocks that are assessed regularly.  
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1.5 Fisheries management  

 

In essence, the aim of fisheries management science is to evaluate different trade-offs in an attempt to 

maximise the biological and economic yield of which marine resources are capable while at the same 

time reducing the risk of undue resource depletion due to overfishing. Within this paradigm, it is the 

role of fisheries management scientists to evaluate these risks and rewards quantitatively. This then 

leads to scientific management advice to marine resource regulatory bodies on the appropriate 

management actions (such as appropriate catch or effort levels) required to achieve the desired trade-

offs between the biological, economic and social benefits from the fishery one the one hand and the 

risk to the resource on the other in both the short and long terms. 

 

 

1.5.1 Management reference points 

 

The role of stock assessment is to estimate current stock status, including whether the stock under 

consideration is overfished, and if so, to what degree? Is it currently managed to achieve maximum 

biological and economic yield, with biomass close to the desired target level? Once there is 

reasonable confidence regarding the estimate of current stock abundance in relation to the desired 

target level, a management plan can be formulated to achieve long-term biological and economic 

objectives. In accordance with recommendations of UNCLOS (UN 1982) and the FAO Code of 

Conduct (FAO 1995) to maintain or restore harvested species at levels which can produce the 

maximum sustainable yield, fishery management objectives are frequently quantified in terms of 

MSY reference points.  

 

Figure 1 gives a measure of stock status in terms of biomass (B) and fishing mortality (F) relative to 

the maximum sustainable biological yield (MSY) related reference points,
MSYF and

MSYB . This phase 

diagram illustrates the management actions required in a broad brush manner.  Fish stocks are 

categorised in terms of the four quadrants of the plot. The management action required to move the 

stock to the desired levels of exploitation can then be determined. 

1. Bottom right-hand quadrant: a healthy underfished stock with biomass above MSYB and fishing 

mortality below MSYF .  

2. Top right-hand quadrant: an historically underfished stock with biomass above MSYB , but 

currently fished at a mortality rate above MSYF ; 
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3. Top left-hand red quadrant: an overfished stock, with biomass estimated to be below
MSYB , 

and continued overfishing at levels that exceed 
MSYF ; 

4. Bottom left-hand quadrant:  an overfished stock which is currently in a rebuilding phase with 

current fishing pressure reduced to allow biomass recovery to MSY level. 

 

In reality, it is very difficult (even impossible) to know exactly where on the plot a stock is positioned 

because of uncertainty associated with estimates of current abundance, B, current fishing mortality 

rate, F, and also with the associated reference points in terms of MSY, even for data-rich stocks. 

Fisheries management is not an exact science and natural fluctuations in resource dynamics (e.g. in 

recruitment), coupled with high levels of uncertainty regarding assessment models and data, typically 

result in large variability over time (even from year to year) in estimates of biomass and management 

reference points. Even with the best management plan in place, the stock biomass cannot possibly be 

maintained exactly at a level that maximises long-term yield, particularly given fluctuations in 

recruitment. Rather, the stock will fluctuate about a target biomass, even in the absence of harvesting. 

MSYB must therefore be considered as a long-term average about which biomass is expected to 

fluctuate when the stock is fished at
MSYF .  

 

Biological reference points and proxies 

 

Biological reference points provide a consistent measure for evaluating stock status and are important 

for quantitative fisheries management. Methods for estimating stock status and reference points 

depend on the type and quality of data available. Equilibrium per recruit models  are generally used to 

estimate static MSY related reference points. For data-rich stocks, harvest strategies are typically 

based on reference points for both biomass and fishing mortality (e.g. 
MSYB and

MSYF ) to adjust catch 

advice in relation to stock size.  

 

However, for cases where reliable estimates of MSYB and MSYF  cannot be obtained, proxy-values 

based on meta-analyses of data-rich stocks, are commonly used.  A widely used proxy for MSYB is 

expressed as a percentage of the pre-exploitation biomass 0B : the percentage depends on the 

productivity of the species although a default proxy for MSYB of 00.4B  is commonly used (Clark 

1993). Proxy-values for MSYF are generally obtained from per recruit analysis.  For data-poor stocks 

which lack adequate quantitative data from which to estimate management reference points, estimates 

of MSY may be based on average historic catch given a sufficiently long catch time-series. When a 

reliable index of abundance is available, a target CPUE is sometimes used as a proxy for MSYB . 
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There are several limitations associated with managing stocks in terms of MSY-based reference 

points, mainly linked to the high levels of uncertainty about estimates of stock status and such 

reference points. Given the extent of uncertainty to be expected in fisheries management, a 

precautionary approach is desirable in which more conservative reference points are adopted so as to 

avoid stock depletion below
MSYB and fishing mortality rates above

MSYF . 

 

Precautionary management: limits and targets 

 

United Nations Fish Stocks Agreement (UNFSA) defines management reference points as follows: 

“Limit reference points set boundaries which are intended to constrain harvesting within safe 

biological limits within which the stocks can produce maximum sustainable yield. Target reference 

points are intended to meet management objectives.” Furthermore, according to this agreement, the 

risk of exceeding the fishing mortality limit reference point should be low and the associated target 

reference point should not be exceeded on average (UN 1995). 

 

Based on the UNCLOS biomass objective (UN 1982) and the FAO Code of Conduct (FAO 1995),

MSYB is often chosen as a biomass target. However, the greater the extent of uncertainty associated 

with estimates of stock status the greater the need to choose a biomass target above
MSYB . A 

precautionary approach to management would therefore correspond to choosing a biomass target,

TARGETB , at some percentage above
MSYB , with the associated fishing mortality target,

TARGETF , below

MSYF (see Figure 2). To avoid the possibility of stock collapse due to sustained overfishing, typically 

limit reference points are also defined.  The biomass limit reference point, LIMITB , chosen at some 

percentage below
MSYB , corresponds to the level of spawning stock abundance below which the 

reproductive capacity becomes impaired, also called recruitment overfishing (Sissenwine and 

Shepherd 1987). UNFSA (UN 1995) defines MSYF as the limit above which overfishing occurs and it 

therefore often serves as a proxy for LIMITF . In line with the precautionary approach, higher levels of 

uncertainty regarding stock biomass levels associated with less resource data would in turn necessitate 

higher associated biomass target and limit reference points and correspondingly lower fishing 

mortality targets and limits.  

 

Different precautionary management reference points have been developed over the years (Restrepo 

et al. 1998, Brodziak et al. 2008, Punt and Smith 2001, Sainsbury 2008, Smith et al. 2009, Andersen 

and Beyer 2013, Maunder 2013). Typical target and limit reference points are shown in Figure 2. 
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Figure 2: Typical biomass and fishing mortality rate target and limit reference points (adapted from Beddington 

et al. 2007). 

 

 

 

With the aim to maximise economic yield (MEY), Australia has adopted a conservative biomass 

target, well above
MSYB  (see Figure 3). Target and limit reference points correspond to 20% above and 

50% below
MSYB for the biomass target and limit reference points respectively (Smith et al. 2009). In 

the absence of reliable estimates of MSY and MEY reference points, proxy values are expressed in 

terms of the pre-exploitation biomass, 0B . Assuming that MSYB is reached when the stock biomass is 

approximately 40% of its pre-exploitation biomass, 
0B , target and limit reference points correspond 

to 48% and 20% of 
0B , respectively. The corresponding proxy for target fishing mortality is 

48F  

which corresponds to the fishing mortality rate that would reduce the biomass to 48% of the pre-

exploitation level in the long-term (Haddon et al. 2012).  

 

In contrast, in Europe (fisheries under ICES management), MSYF is generally considered a target rather 

than limit reference point. To safeguard against undesirable low levels of biomass when fishing at

MSYF , a biomass trigger is defined: once spawning biomass is estimated to drop below TRIGGERB , 

fishing mortality is reduced from the target fishing mortality MSYF  (ICES 2013b), as addressed further 

below. 
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Figure 3: An alternative biomass target corresponds to the biomass that maximises economic yield, BMEY, which 

is greater than the biomass that maximises biological yield BMSY for fisheries with low discount rates. The 

bionomic equilibrium, BBE, corresponds to the biomass at which zero net profit is produced and B0 is the pre-

exploitation biomass. 

  

 

1.5.2 Harvest control rules 

 

Stock assessment methods typically provide estimates of stock biomass and status relative to target, 

threshold and/or limit reference points, given adequate data. Nevertheless, management failures may 

occur even when state-of-the-science assessment methods are applied to reliable data, because social 

or political objectives are not compatible with resource conservation ones. To better formulate 

management objectives and combat arbitrary catch advice, emphasis has lately been placed on the 

development and implementation of decision rules. These rules incorporate the results of the stock 

assessments to provide the scientific advice on which management decisions are based to achieve pre-

specified objectives. 

 

For example, if a stock is estimated to be overfished with a biomass well below MSYB (or a proxy 

thereof), some rebuilding plan to move the stock towards the target biomass within a pre-specified 

number of years is desirable. This would involve decreasing fishing pressure to first move a stock 

from the top to the bottom left-hand zone of Figure 2, followed by a gradual biomass recovery to

MSYB , or above, to move the stock to the target zone in the phase diagram. To aid management 

decisions, rebuilding plans are formulated in terms of a well-defined (and simulation tested) decision 

rules that include management reference points as well as realistic time-frames in which to realise pre-

specified objectives.  
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A harvest control rule (HCR) is an algorithm that determines how the annual catch is adjusted each 

year according to stock indicators, and in relation to management reference points and the perceived 

extent of uncertainty about the stock. With the aim to rebuild stocks to, or maintain them at, at their 

most productive biomass levels, so as to maximise yield while minimising the risk of stock depletion 

to levels that might impair future recruitment levels, HCRs typically incorporate target and limit 

reference points, sometimes with pre-specified thresholds between the two.  

 

To better link the choice of the HCR to be applied to the quality and quantity of data available, some 

management authorities have developed tier systems (Punt et al. 2013). For example, one of eight 

regional councils in the United States, the North Pacific Fishery Management Council (NPFMC), has 

adopted a tiered system to better define harvest control rules according to the type of information 

available (NPFMC 2014). For the Tier 1 rule, the fishing mortality rate that gives acceptable 

biological catch (ABC) is decreased linearly from a maximum value of 0.75% of
MSYF to zero in 

relation to a decrease in biomass below
MSYB (Figure 4). Details of this tier system are given in 

Appendix A.1. 

 

 

Figure 4: The Tier 1 HCR adopted by the North Pacific Fishery Management Council (NPFMC) to set annual 

catch limits (ACLs) for North Pacific groundfish. The upper (dashed) and lower (solid) lines correspond to 

fishing mortality rates associated with the overfishing limit (OFL) and acceptable biological catch (ABC), 

respectively (see Appendix A.1 for details). 
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To prevent overfishing in all Commonwealth fisheries, a Harvest Strategy Policy (HSP) was 

introduced in Australia in 2007 to set limit and target biomass reference points to achieve risk-related 

sustainability objectives (Smith et al. 2009). An objective of this HSP is to ensure that harvesting 

strategies meet risk thresholds even in circumstances when data availability is compromised as in the 

case for data-poor stocks. The policy specifies explicit management reference points with the biomass 

target and limit fixed at 48% (a proxy for
MEYB ) and 20% (a proxy for half of

MSYB ) of pre-

exploitation biomass, respectively. In addition, the policy also specifies an acceptable level of risk: 

stock biomass must exceed 
LIMITB  at least 90% of the time (Smith et al. 2013). 

Based on the approaches adopted for Alaskan fisheries, the Australian Fisheries Management 

Authority (AFMA) organise harvest strategies for Southern and Eastern Scalefish and Shark Fishery 

(SESSF) species according to a tiered system in terms of types of data, methods of assessment and 

decision rules (see Appendix A.3 for details). Stocks with sufficient data and robust stock assessments 

are managed according to the Tier 1 decision rule where target fishing mortality rate is set equal to 

FMEY when stock biomass is above
MSYB , and zero when biomass drops below 

LIMITB  (Figure 5).  

 

 

Figure 5: The SESSF HCR with biomass target, MSY and limit reference points indicated by BTARG, BMSY and 

BLIM. Australia’s HSP specifies a biomass target of BMEY, the biomass at which maximum economic yield is 

achieved. According to this rule the target fishing mortality rate, FTARG, is progressively reduced to zero once 

the biomass decreases below MSY level (from Smith et al. 2009).    
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In contrast, the ICES harvest control rule is based on reference points
MSYF and 

TRIGGERB  (ICES 

2013b). An estimate of
MSYB (the value around which stock size fluctuates when

MSYF F ) is not 

incorporated in the HCR explicitly as recent stock size trends may not be informative about
MSYB . 

Rather, a threshold reference point,
TRIGGERB , is adopted which corresponds to the lower bound of 

spawning biomass fluctuations about
MSYB  when fishing at

MSYF . It serves to trigger a reduction in 

fishing mortality to allow the stock to recover and fluctuate about
MSYB (see Figure 6).  

 

 

 

Figure 6: The HRC adopted by ICES. FMSY is considered a target rather than a limit reference point and BTRIGGER 

serves as a precautionary threshold point (equivalent to BPA adopted by ICES previously). 
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1.5.3 The Management Procedure Approach 

 

The Management Procedure (MP) approach, first developed by the International Whaling 

Commission’s (IWC’s) Scientific Committee (Punt and Donovan 2007), places the emphasis on long-

term management of the resource and has found favour with marine scientists and fisheries managers 

seeking a comprehensive and inclusive resource management approach.  

 

Rather than base management advice on a ”best” assessment, this approach integrates over a variety 

of different plausible population models, called the operating models, representing different 

hypotheses regarding the resource. Different harvesting strategies are then simulation tested to 

ascertain which harvest control rule (HCR) would best ensure that the desired long-term management 

goals are met in practice across this range of alternative population models. While an assessment 

approach typically allows for only one possible representation, or reality, of the resource, the MP 

approach incorporates different plausible states of nature, represented by a range of assessment 

(operating) models drawn from the range discussed in Section 1.4 above.  

 

The MP approach has established itself as a powerful fisheries management tool to assist meeting 

multiple management objectives in a manner that checks robustness to uncertainty for compatibility 

with the Precautionary Approach (De Oliveira et al. 2008). An advantage of this approach is related to 

the important resource management concern of long-term trade-offs between, for example, the 

mutually conflicting objectives of maximizing catch and minimising the risk of overexploitation of 

the resource. Another important advantage is the inclusive nature of this approach where key 

stakeholders participate in setting management goals and in deciding strategy to achieve them. 

However, the key advantage of the MP approach is its ability to incorporate uncertainty in the 

modelling exercise explicitly, thereby ensuring consistency with the precautionary approach 

(Butterworth 2007).  

 

For this reason, inter alia, this approach has been, and remains, favoured over that of annual stock 

assessments as the basis for the provision of management advice for the most valuable data-rich fish 

stocks in South Africa (Geromont et al. 1999). In New Zealand, the MP approach has been adopted to 

provide TAC recommendations for their rock lobster fisheries (Starr et al. 1997). More recently, an 

MP approach has been adopted for Southern bluefin tuna (CCSBT 2012) and is planned for North 

Atlantic bluefin tuna (ICCAT 2006). Initiatives are underway to introduce the MP approach in Europe 

and the USA (De Oliveira et al. 2008), with MPs having been formally adopted in Iceland to manage 

Icelandic cod (ICES AGICOD Report 2009), haddock (ICES 2013c) and saithe (ICES 2013d). A 

more general form, known as Management Strategy Evaluation (MSE), is popular in Australia where 
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it has been applied by the Australian Fisheries Management Authority (AFMA) partnership to ensure 

stakeholder involvement in all key areas of fisheries management (Smith et al. 1999).  

 

The MP approach, to date used only for the management of high-value data-rich marine resources, 

could lend itself well to data-poor stocks in order to better address the uncertainty and risk associated 

with lack of data, in a framework that is “closely linked to fisheries management and the decision 

making process”, as stipulated by the FAO (2010). Furthermore, motivation to collect extra data is 

part and parcel of an MP approach in which the collection cost of and yield obtainable from extra data 

are quantified as standard management statistics. As such, the MP approach may present a plausible 

management solution for the vast number of data-poor resources that are currently not under any 

formal assessment (Geromont and Butterworth 2014a). 
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1.6 Discussion 

 

1.6.1 Methods: complex or simple  

 

With advances in computer power, assessment models have become more complex. Hilborn (2003) 

lists some disadvantages with the current trend to use ever more complex models: 

 

a) Lack of transparency: The complexity of these models render them “black boxes” which are 

difficult to understand, even by the analysts, and even more difficult to explain to fishery 

stakeholders. 

b) Lack of access: Complex models exclude all but the skilled analysts. With the shortage of 

trained scientists, assessments may be performed by people who are unable to understand the 

underlying statistical methods and software. More complex models, with fewer people who 

understand them, might lead to the abandonment of these state-of-the-art methods in favour of 

simple (and untested) “rules of thumb” whose application is understood by all. 

c) The models overshadow the data: Most effort goes into modelling and analysis, and scientists 

become out of touch with the fishery, with the consequence that models are becoming more 

technical and less relevant to the fishery to be managed.  

 

For these reasons, Hilborn predicts that there will be a move towards using management procedures 

(MPs) which employ rules that use data directly or very simple models, with complex models 

relegated to the role of providing the operating models (different states of nature) on which the MPs 

are simulation tested for robustness.  

 

1.6.2 Management: science or solution? 

 

A typical problem associated with stock assessment is model uncertainty: how to choose the “best” 

model to apply to the data available for the species/stock under consideration. An important 

conclusion drawn from the 2012 SISAM workshop was that, while application of multiple models 

may help to evaluate model uncertainty, having more than one model does not facilitate management 

advice when estimates of stocks status differ. Furthermore, applying multiple models to real data 

cannot distinguish performance as they cannot be calibrated against the “truth” (Deroba et al. 2014). 

Wentzel and Punt (2011) conducted a comparative study to evaluate model performance of different 

methods when estimating appropriate harvest levels for data-poor stocks. They concluded that 

simulation testing is essential to evaluate the risks associated with alternative methods to provide 
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decision makers with the necessary information to set precautionary reference points and acceptable 

biological catches that account for uncertainty. Millar et al. (2014) suggest a move away from “best” 

assessment type management towards “model averaging” (Claeskens and Hjort 2008) to incorporate a 

range of plausible hypotheses. However, as Hogarth et al. (2006) point out, “stock assessment is not 

the purpose of management, but one step in a much larger process intended to achieve management 

objectives under conditions of uncertainty.” 

 

An alternative methodology, the Management Procedure (MP) approach (Section 3.1), follows a more 

holistic approach to fisheries management and presents a formal framework to take full quantitative 

recognition of underlying uncertainty by integrating over a range of assessment models, called 

operating models, as well as including all stakeholders (scientists, industry and managers) in the 

management process, thereby ensuring that diverse plausible hypotheses and objectives are evaluated. 

Bentley and Stokes (2009) compare the two management paradigms and highlight the potential of the 

MP paradigm for application to data-poor stocks characterised by high levels of uncertainty in cases 

where the assessment paradigm has difficulty to provide fisheries management advice due to limited 

data.  

 

1.6.3 From science to policy to implementation: a partnership approach 

 

Consider three very distinct stages in traditional fisheries management: science, policy, and 

implementation. These three stages frequently do not give the same weight to different objectives: 

while the scientist focuses on biological objectives, the policy maker concentrates on socio-political 

issues and the fisherman keeps an eye on economic targets. Once catch advice is recommended by the 

scientists to the policy makers, the advice will likely be re-configured to better suit a different set of 

objectives. The resultant catch advice is then repackaged into smaller units before being converted to 

currency by one or more fishing fleets, from one or more countries, competing for one or more 

resources, with catches often not being well monitored. It comes as no surprise then that the resultant 

catch (removals) may well be very different from the TAC advised by the scientists. Policy decisions 

that differ from underlying the scientific advice constitute a source of uncertainty that is often ignored 

in the scientific evaluation of harvesting strategies. Termed “institutional uncertainty” by Hogarth et 

al. (2006), it is a measure of: 

i) how well key stakeholders communicate with each other; 

ii) how well the scientific information is understood by different stakeholders; and 

iii) to what extent participants in the process can evaluate trade-offs and are willing to 

compromise if necessary. 
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The main reason for this divergence in scientific and policy advice is entrenched in the 

compartmentalising of the different management stages. On the one hand, the fishery scientists who 

provide scientific advice are unlikely to be fully cognizant of pertinent social, economic and political 

factors that drive policy. On the other hand, resource managers who must decide on the economic and 

social constraints of rebuilding strategies are unlikely to fully grasp the implications of the 

assessments. This division of focus may lead to a management failure because different trade-offs are 

not fully evaluated. This leads to the impossible task of deciding future strategy without giving 

decision makers a choice of feasible (simulation tested) options together with the risk/reward trade-

offs associated with different management actions. 

A formal MP approach (Punt and Donovan 2007), and more generally MSE as practiced in Australia 

(Smith et al. 1999), presents a framework to combine expertise and insight from scientists, policy 

makers and industry representatives who seek to streamline fisheries management: 

i) scientists are exposed to the realities of fisheries management and attendant uncertainties, 

economic objectives and social constraints; 

ii) industry members are informed regarding the risk-return trade-offs and potential long-

term gains associated with healthy biomass levels; and 

iii) policy makers get insights into the biological and economic implications of alternative 

strategies. 

 

Within this framework, scientists are aware of social and economic objectives when designing 

harvesting strategies, and members of industry better understand the short- and long-term catch/catch 

rate trade-offs of the strategy that they themselves will endorse prior to implementation.  
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Part 2 A review of existing data-poor assessment methods for data-poor stocks and 

their application to management 

 

 

Contributing reviewers:  

With thanks to the following scientists who provided comments or text inserts in response to receipt 

of an earlier version of this document: Tom Carruthers, Giacomo Chato Osio, Anne Cooper, José De 

Oliveira, Rainer Froese, Ernesto Jardim, David Newman, Jeremy Prince, Andre Punt, Jim Thorson 

and Shijie Zhou 

 

2.1 Introduction 

There are as yet few quantitative measures in place to manage the majority of low-value fish stocks 

worldwide, mainly due to the lack of reliable data on which to base quantitative assessments. The 

FAO (2010) has highlighted the need for the development of scientific management methods and 

procedures for an estimated 90% of the stocks exploited worldwide that are currently not assessed. 

Due to the high costs of data collection, these methods and procedures need to be less data-

demanding, and give either or both reliable estimates of stock status (e.g. abundance relative some 

biomass reference point such as BMSY) and provide the quantitative information necessary for 

designing effective management approaches. The FAO (2010) further states that uncertainty and risk 

need to be incorporated in an assessment process that is “closely linked to fisheries management and 

the decision-making process”, including some form of motivation to collect further data based on the 

exploitation rate where “intensively exploited fisheries will require more intensive and frequent data 

collection and monitoring than moderately exploited ones”. 

 

Traditional stock assessment methods such as Virtual Population Analysis (VPA) and Statistical 

Catch-at-Age (SCAA) are generally not a viable option for data-poor stocks because there are rarely 

sufficient reliable data from which to estimate population-model parameters. Furthermore, formal 

quantitative stock assessments are generally costly, expertise hungry and demand large quantities of 

time and information. As such, do not present a practical management solution for most data-poor 

stocks, particularly when these are also low value (as is generally the case). 

 

There are many causes for sparse data. The reason a stock is data-poor is usually because of its 

relatively low-value (and therefore it is often discarded), or simply because catches are low. 

Management of low-value data-poor stocks can be particularly difficult due to high discard rates 

which are hard to estimate reliably. The lack of data, and consequent lack of stock assessment, poses a 

great challenge for fishery managers and also creates a serious risk of biological and economic 
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overexploitation for data-poor fisheries. Rather than attempt to collect and compile comprehensive 

data-sets with which to perform complex (e.g. age-structured) assessments, simple methods are 

required for data-poor stocks that use relatively few but often readily available data, where these 

methods are easy to implement.  

 

In the past, data-poor management has generally based catch advice on proxies (e.g. fixing the fishing 

mortality, F, equal to the natural mortality rate, M) or the historical average catch... Catch-only 

methods have also become popular for stocks with a reliable catch time series, when used together 

with some biological information (MacCall 2009, Dick and MacCall 2010). In the absence of a 

reliable catch time series, length-based methods have been proposed (Gedamke and Hoenig 2006, 

Prince 2011, Hordyk 2014b), or simple methods that rely on some index of abundance (ICES 2012, 

Geromont and Butterworth 2014a). 

 

A number of workshops have been held globally to identify data-poor (or data-limited) stock 

assessment methods associated with different levels of data availability as well as harvesting 

strategies to ameliorate the lack otherwise of effective management for such species/stocks. For 

example, a workshop was held in California in 2008 to discuss various challenges for managing data-

poor stocks. This summarised then current approaches used around the globe (Honey et al. 2010).  

 

In Australia, a Harvest Strategy Policy (HSP) was introduced in 2007 to set limit and target biomass 

reference points to achieve risk-related sustainability objectives even in circumstances when data 

availability is compromised (Smith et al. 2009, Punt et al. 2011). An objective of this HSP is to 

ensure that harvesting strategies meet risk thresholds even when the level of uncertainty is high, as is 

the case for data-poor stocks. In particular, Smith et al. (2009) propose that information from data-

rich stocks/fisheries could be used when developing harvest control rules to manage data-poor 

stocks/fisheries, either by applying the “Robin Hood” approach of using data/information of data-rich 

stocks to inform analyses for demographically similar data-moderate or data-rich stocks, or by simply 

grouping similar (bycatch) species in “baskets” and basing management decisions on one member of 

such a group. Based on applications in Australia, Smith et al. (2009) recommend that objective 

harvest control rules be developed to manage data-poor stocks/fisheries in the absence of stock 

assessments due to insufficient data. Geromont and Butterworth (2014a) propose a generic 

Management Procedure (MP) approach for data-poor stocks to better account for the high levels of 

uncertainty typically associated with these stocks. The MP approach also provides a formal 

framework for all aspects of the management process, from stakeholder participation when 

prioritising objectives, to data-collection and finally automating catch advice. 
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Based on experiences around the world, and particularly in Oceania, Prince (2010) recommends a 

collaborative approach where local fishers are involved in data collection, assessment and 

management. He suggests that simple transparent decision rules based on resource indicators collected 

directly from catch data (e.g. size-based indices of abundance) are required.  

In an effort to develop methods to better inform decision makers on stocks without analytical 

assessments, ICES (2012) has evaluated and implemented a suite of data-limited methods. For those 

fisheries where an index of abundance (direct or indirect, such as provided by mean the length of the 

catch) is available, catch advice is generated by applying a simple control rule that adjusts the catch 

up/down if the average index for the most recent years is higher/lower than the previous average.  

 

In early 2014, the Natural Resources Defence Council (NRDC) convened a Data-Limited Methods 

(DLM) Workshop in Miami, USA, to investigate appropriate methods to set catch limits when data 

are lacking. The workshop – which was comprised of scientists from the US National Marine 

Fisheries Service, state and international fishery management organizations, and academia – reviewed 

current and emerging methods, evaluated their efficacy for different fisheries and data situations, and 

developed recommendations for improving the science and management of data-limited fisheries, 

including through the use of a “Data-Limited Fisheries Toolkit” (Carruthers 2014). The Toolkit, 

which was unveiled at that workshop, facilitates the use of management strategy evaluation (MSE) to 

identify optimal data-limited methods depending on species, fishery, and data quality, and then allows 

for the rapid application of the best available data-limited methods for each situation. A summary of 

current methods to set catch limits for data-limited fish stocks in the United States is provided by 

Newman et al. (2014). 

 

To the review emerging data-poor methods and provide an overview of their performance, Fisheries 

Research has dedicated a special issue, currently in press, to the “Development, testing and evaluation 

of data-poor assessment and management methods”. A number of scientific papers that have been 

accepted for publication in this Special Issue are referenced in this document. 

 

A summary of data-poor methods follows (Table 1). These methods encompass traditional stock 

assessments and extend to harvest control rules (HCRs) for providing management advice in the form, 

for example, of catch limits. The reason is that in the data-poor area, the methods available range from 

one end of the spectrum to the other, with some overlap between simple assessments and control 

rules. There are many ways these methods/approaches could be arranged. The decision taken for what 

follows was to do this on the basis of the type of data available, as this will probably provide the most 

user-friendly basis for readers seeking practical advice for their fishery.  
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Data type Method type Method 

Qualitative and  

semi-quantitative 

(Section 2.2) 

Assessments Fisher’s Knowledge (FK) 

Productivity and Susceptibility Analyses (PSA) 

Length-based decision trees 

Traffic-light framework 

Per-recruit  

and 

length-based  

(Section 2.3) 

Assessments Beverton-Holt 

Length-Based Spawning Potential ratio (LB-SPR) 

Length-based per-recruit 

length-based indicators , , mat opt megaP P P  

Harvest control rules Stepwise constant-catch 

Length target 

F ML Reference point 

Catch-based  

(Section 2.4) 

Assessments Catch classification method 

Catch-MSY 

Catch-Only Model (COM) 

State-Space Catch-Only Model (SSCOM) 

Depletion-Based Stock Reduction Analysis (DB-SRA) 

Catch-Curve Stock Reduction Analysis (CC-SRA) 

Harvest control rules Depletion Adjusted Catch Scalar (DACS) 

Shepherd’s Hang Over TAC (SHOT) 

Depletion-Corrected Average catch (DCAC) 

Index-based 

(Section 2.5) 

Assessments An Index Method (AIM) 

Replacement-yield model 

Surplus production model 

Harvest control rules Index adjusted status quo 

Index slope 

Index target 

Index distribution 

MPA-based  

(Section 2.6) 

Harvest control rules Density Ratio Control Rule (DRCR) 

 

Table 1: This table categorises data-poor methods into six broad categories according to the type of data 

available, although there is unavoidable overlap between these methods and categories.  
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2.2 Qualitative and semi-quantitative methods 

 

In very data-poor situations where quantitative methods fail, semi-quantitative approaches are useful 

to perform a rudimentary risk assessment and vulnerability analysis. These methods should not be 

seen as a substitute for stock assessment or MP/MSE approaches as they do not generate quantitative 

catch advice or estimate of stock size. 

 

2.2.1 Fishers’ Knowledge (FK) 

 

Fishers’ knowledge can be incorporated in all aspects of fisheries assessment and management and 

has particular potential if there is little other information on which to base management advice. For 

example, local knowledge, based on fishers’ experience, can be used to reconstruct basic indicators of 

abundance or set up a local survey programs involving fishermen.  

 

Prince (2010) argues that data-poor fisheries can be managed successfully only by involving local 

fishers in all aspects of the fishery including data collection, assessment and management: the solution 

to data-poor fisheries is to adapt simple fisher-based processes locally by involving fishers “to fish for 

data as well as profit” and recruiting and training “barefoot ecologists” to support the implementation 

of fishery based systems for data collection and assessment. He suggests that local FK and expert 

knowledge can be combined to develop simple management strategies for conserving local spawning 

biomass, for example the length-based decision tree applied to abalone stocks in Australia (Prince 

2010). 

 

Orensanz et al. (2013) investigate different methods to use FK in various components of a fishery, 

including social, cultural, economic and governance aspects. They emphasise that regular 

collaborative partnerships involving fishers, scientists and managers are the most effective way to 

engage FK in fisheries assessment and management. Some methodological guidelines to promote 

successful collaboration are: 

1. Establish a framework to facilitate interaction and collaboration among all stakeholders of the 

fishery;  

2. Promote collaborative research projects;  

3. Provide rules of engagement to promote mutual respect and transparency; 

4. Prioritise stakeholder objectives;  

5. Identify realistic (and practical) methods and solutions;  

6. Assist in obtaining financial support; 

7. Provide training to stakeholders; 
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8. Encourage stakeholder participation and discussion at different stages of management process 

from design to implementation, as well as feedback; 

9. Examine standards and protocols and experimental and survey designs; 

10. Establish protocols for data validation; 

11. Communicate and disseminate project results to all stakeholders. 

 

Advantages: 

A partnership approach presents an ideal framework to combine expertise and insight from managers, 

scientists and fishers and to promote cross-fertilisation between experience-based and research-based 

knowledge. FK can be used to inform prior distributions when adopting Bayesian-type assessment 

methods. FK is indispensable when reconstructing a time series of total removals. 

 

Disadvantages: 

The high levels of variability typically associated with catch rates derived from FK make it difficult to 

distinguish a real trend in stock abundance from noise in the data. Bias and discontinuities (non-

comparability) in data series are unavoidable when attempting to reconstruct an historical time-series 

from FK. More generally, one must guard against the provision of biased information to support 

hidden agendas regarding the outcome. 

 

Applications and reviews: 

 

Some examples of collaborative initiatives between fishers, scientists and managers are listed below 

(Orensanz et al. 2009). 

 

 Formal stakeholder participation is part of the lobster fishery management process on the 

Pacific coast of central Baja California, where the fishery authority collaborates with 

cooperatives (represented by the fishing federation FEDECOOP) to monitor the lobster 

fishery (Ponce-Diaz et al. 2009) to provide time series data for stock assessments. The 

federation was integral to the MSC certification of the lobster fishery, the first artisanal 

fishery from a developing country to be MSC certified. 

 

 Further south, off the Chilean coast, the lobster fishers of Juan Fernandez Archipelago, 

collaborated with scientists to design and implement a cost-effective sampling program. The 

resultant standardised index of relative abundance was in turn used to develop harvesting 

strategies that were compatible with the traditional tenure system already in place for the 

lobster fishery (Ernst et al. 2010).  
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 In California, fishers from a trap fishery participated in a monitoring program which in turn 

provided a cost-effective catch-based indicator of crab abundance. This collaborative 

monitoring program served as a foundation for many recommendations including the 

definition of objectives, training of participants, validation and review of collected data 

(Culver et al. 2010).  

 

 On the east coast of Canada, a partnership between fishing associations and scientists 

collaborate in regional sentinel fishing programs with the main objective being to develop and 

maintain continuous and consistent indices of abundance to be used in cod stock assessments. 

The sentinel programs were established in 1994 by the Fisheries Resource Conservation 

Council (FRCC) to monitor the evolution of cod stocks following the closure of the northern 

cod fishery in the Gulf of St. Lawrence. The program requires training of fishermen, 

specifically on the sampling protocols for sentinel fisheries (GSP 2002). 

 

 In the Australian abalone fishery, divers are taught to assess abalone reefs using shell 

morphology to distinguish between sub-adult and fully fecund abalone. This Rapid Visual 

Assessment (RVA) (Prince et al. 2008) provides a crude yet powerful tool to gauge stock 

status and develop reef-scale harvest policies. This technique is particularly valuable to 

identify and avoid growth and recruitment overfishing. Decision trees, which codify the 

qualitative information, are used to categorise reefs into exploitation categories, each with its 

pre-agreed harvesting policy (see Section 2.2.3 for details). 

 

 

2.2.2 Productivity and Susceptibility Analysis (PSA) 

 

Originally developed to classify bycatch sustainability in the Australian prawn fishery (Stobutzki et 

al. 2001), this approach determines stock vulnerability to overfishing in a broad brush manner. 

Subsequently, in the US, PSA was identified as the best approach to evaluate the productivity of data-

poor stocks and their susceptibility to over-exploitation based on a flexible semi-quantitative 

methodology that is applicable broadly (Patrick et al. (2009). PSA is an integrated risk approach and 

gives a measure of stock vulnerability to overfishing of a stock in relation to other stocks and, as such, 

can aid management recommendations when data are limited.  

 

The method involves giving a score (1=low, 2=moderate, 3=high) for the stock’s productivity and 

susceptibility attributes (for example 22 attributes in total for the case considered in Patrick et al. 

(2009)). The productivity of a stock is an indication of its capacity to recover once depleted, while the 
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susceptibility is a measure of the stock’s availability to the fishing fleet (catchability).   The stock’s 

vulnerability score is then calculated by inspecting a plot of the weighted average of these scores. 

Stocks with a low productivity score and a high susceptibility score are the most vulnerable, while 

those with high productivity and low susceptibility are less vulnerable.  

 

Method: 

The overall vulnerability is measured as the Euclidian distance from the plot origin: 

  

where is the productivity score (ranging from 3 to 1) and is the susceptibility score (ranging from 

1 to 3). Therefore, a high productivity and low susceptibility combination places the attribute close to 

the origin of the plot corresponding to low vulnerability, while a low productivity score and 

high susceptibility score implies that the stock is very vulnerable to overexploitation (see Figure 7). 

 

Figure 7: A PSA plot with showing a reversed productivity scale from high to low productivity (plot taken from 

Patrick et al. (2009).  

  

2 2( 3) ( 1)v p s

p s

( , )p s



 

 53 

 

Patrick et al. (2009) selected ten productivity and twelve susceptibility attributes for their study. Not 

all attributes are equally important when assessing the vulnerability of a fishery/stock. They therefore 

suggest that a default weight of 2 be given to all attributes, and recommend that these weights are then 

adjusted from 0 to 4 to better reflect the vulnerability of the fishery. Note that the same weighting 

system should be applied to all stock within a fishery to ensure consistent results.  

 

Productivity attributes (high=3, moderate=2 and low=1): 

1. Intrinsic growth rate (r): Patrick et al. (2009) recommend that this attribute be given a 

maximum weight of 4 as this parameter combines of a number of processes/attributes. A high 

score of 3 is given when , while a low ranking is given to a low-productive species 

with  

2. Maximum age ( ): The higher the maximum age the lower the natural mortality rate. A 

high score of 3 is given to a short-lived species with a maximum age of less than 10 years, 

while a low score of 1 is given to a long-lived species with a maximum age greater than 30 

years. 

3. Maximum size ( ): The presence of larger fish generally reflects a lower level of 

productivity. A high score is given to a species with maximum length less than 60cm, while a 

low score is accorded to large species with maximum length in excess of 150cm. 

4. Growth coefficient ( ): A long-lived, low-productivity stock generally has a low value for . 

The inverse relationship between the maximum age and  can be approximated by 

 (Froese and Binohlan 2000). A high score of 3 is given when
10.25yr  while 

a low score of 1 is given when
10.15yr . 

5. Natural mortality rate ( ): Stock with higher  require high production levels to maintain 

stock abundance. Conversely, low production is associated with a low . Therefore, a high 

score of 3 is given to a species when
10.4M yr , while a low score of 1 is given when

10.2M yr . 

6. Fecundity: Fecundity, measured as the number of eggs per spawner, fluctuates highly with 

spawner size and age, and Musick (1999) suggests using data from fish at age of first 

maturity. A low value for fecundity is typically taken to indicate low productivity. However, 

this metric is difficult to interpret as fecundity also depends on survival. 

7. Breeding strategy: This attribute gives an indication of juvenile mortality rate. A score of 1 to 

3 is based on the extent of parental protection of larvae, the length of gestation period and 

nutritional contribution.  

0.5r

0.16r

maxt

maxL

max3 / t
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8. Recruitment pattern: This attribute distinguishes between stocks with sporadic recruitment 

patterns (corresponding to a higher risk of subsequent year-class failures) and those stocks 

with stable recruitment. A high score of 3 is given for a stock for which recruitment is 

frequently successful and a low score of 1 for stocks for which recruitment success is rare. 

9. Age-at-maturity ( mt ): Long-lived low productivity stocks generally mature at older ages. 

Therefore, a high score of 3 is given for stocks with an age at 50% maturity less than 2 years, 

while a low score of 1 is given to stocks that take longer than 4 years to reach 50% maturity.  

10. Mean trophic level: More productive stocks generally fall in lower trophic levels and vice 

versa. A high score of 3 is given when the trophic level is judged to be less than 2.5 while a 

low score of 1 is given when the trophic level above 3.5. 

 

Susceptibility attributes (low=1, moderate=2 and high=3): 

1. Areal overlap: Greater overlap of the stock and the fishery implies greater susceptibility. 

2. Geographic concentration: Highly aggregated stocks, or “hot spots”, render a stock 

susceptible to the fishery if there are areal and vertical overlaps. 

3. Vertical overlap: similar to 1) above, but here refers to the vertical position of the stock in the 

water column in relation to the fishing operation (e.g. Demersal, mid-water or pelagic). 

4. Seasonal migration: This attribute may or may not impact the susceptibility of the fishery 

depending on the overlaps of the distribution with the fishery at different times of the year. 

5. Schooling, aggregation, and other behaviour (in response to fishing): Behavioural responses 

such as herding that would affect gear catchability. 

6. Morphology affecting capture: This attribute concerns selectivity to fishing gear based on fish 

shape (rotundity, spiny versus soft ray fins). Conventionally selectivity is assumed to be 

related to fish length, but having taken that into account, a species with bony spines will be 

retained by a given mesh size to a greater extent than a soft spined species.  

7. Desirability/value of fishery: The higher the value of the stock, the more susceptible it would 

be to overfishing. A low score of 1 is given to a non-targeted bycatch and/or discard species, 

while a score of 3 is given to a high-value targeted stock.  

8. Management strategy: A low score of 1 is given if the target stock is under formal 

management, while a high score of 3 is given to a targeted stock in the absence of catch limits 

or accountability measures. Data-poor stocks will typically receive a high score until formal 

management measures are in place. 

9. Fishing mortality rate: Overfishing is defined as fishing mortality relative to natural mortality 

rate: a low score of 1 is given if , while a high score of 3 is given if  / 0.5F M / 1F M
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10. Spawning biomass: A low score of 1 corresponds to a spawning biomass (or proxy) in excess 

of 40% of the pre-exploitation level, whereas a high score of 3 is given to stocks with SSB 

falling below 25% of the pre-exploitation level. 

11. Survival after capture and release: This attribute scores the likelihood of the fish surviving 

after being discarded. A low score corresponds to a resilient fish with a 67% probability of 

survival, while a high score is given to a species with a survival rate of less than 33%. 

12. Fishery impact on habitat: A low score is given when the fishery has minimal (or temporal) 

adverse effects on the habitat. A moderate score is given if these effects are more than 

minimal, but mitigated, while a high score is given when such effects are not mitigated.  

 

The software is available from the NOAA toolbox [nft.nefsc.noaa.gov] 

 

The PSA also incorporates a tier-based data quality index (five tiers ranging from data-rich (1) to 

data-poor (5)) to provide a measure of data uncertainty. In this manner, for those data-poor stocks 

which lack life-history parameter estimates, stocks/species with similar demographic parameters 

could be used, in association with a low data quality score.  

 

Assumptions: This method assumes that the qualitative or semi-quantitative rankings are unbiased and 

the criteria are appropriate for the stock/fishery under consideration.  

 

Input: In-depth knowledge and understanding of the species and fishery, with particular regard to 

stock productivity and susceptibility to fishing gear and practices. Qualitative and semi-quantitative 

knowledge needs to be quantified in terms of parameters such as: max, , , , , /r t L M F M . 

 

Advantages: This method is used to rank data-poor stocks in terms of their vulnerability and so 

identify and prioritise stocks in terms of their research and management requirements. This 

methodology could prove very useful in combination with other data-poor approaches. For example, 

prior distributions could be derived using this method to be applied subsequently in other data-poor 

methods such as DCAC and DB-SRA (Cope et al. In press).         

 

Disadvantages: The main disadvantage is that the rankings are subjective and therefore cannot be 

rigorously simulation tested. In the absence of reliable quantitative estimates of the life-history and 

fishery parameters, this method relies on qualitative estimates of stock productivity and susceptibility 

which can lead to unreliable rankings. For data-poor stocks, many attributes will be unknown 

resulting in default scores that are unlikely to reflect the true productivity and susceptibility of the 

stock. The two attributes related to stocks status and fishing mortality rate are generally not known for 
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data-poor stocks – given this knowledge, a more quantitative approaches may be more desirable. The 

attributes scored are not always independent of each other and assigning appropriate weights can be 

difficult. The PSA does not provide management reference points, but merely indicates high risk 

stocks that require management intervention. 

 

Applications and reviews: 

 Stobutzki et al. 2001 applied PSA to assess the sustainability of some 411 fish bycatch 

species in the Australian northern prawn fishery. Each species was ranked in terms of its 

susceptibility to mortality in prawn trawling and its capacity to recover after depletion. The 

ranking determined the relative capacity of the species to be resilient to trawling, thereby 

prioritising species for research and management interaction. 

 Simpfendorfer et al. (2008) used this approach to assess the risk of over-exploitation for data-

poor pelagic Atlantic sharks. Results were compared to PSA scores for the blue shark, a data-

rich ICCAT managed species that is estimated not to be over-exploited at present.  All shark 

and ray species investigated in this study were found to have higher risk levels than those 

associated with the blue shark, mainly due to the lower levels of productivity associated with 

these species compared to blue shark. 

 Patrick et al. (2009, 2010) applied PSA to six US fisheries consisting of 166 stocks following 

the Vulnerability Evaluation Work Group (VEWG) held in 2008 to provide a methodology 

for determining the vulnerability of stocks for which there were insufficient data to conduct 

quantitative modeling. The PSA was identified as the best approach for this. The 

stocks/species investigated in this study exhibited varying degrees of productivity and fishing 

susceptibility, with different levels of data quality. The PSA was able to distinguish between 

stocks, with appreciably higher susceptibility scores accorded to stocks that were known to be 

overfished or undergoing overfishing. However, the susceptibility of non-target stocks was 

not notably different from target stocks, highlighting the need for re-examination of 

vulnerability thresholds for bycatch stocks. 

 ICES (2012a, 2012b) is currently evaluating the application of PSA for Category 5 and 6 

stocks characterised by having only landings data available (ICES 2012b). The WKLIFE 

Workshop (ICES 2012a) notes that attributes scored should be as independent from each 

other as possible to maximise the amount of information drawn on. To increase the level of 

precaution, a default high risk level score is recommended if the score for an attribute is 

unknown. 

 Cope et al. (2011) used PSA to measure the vulnerabilities of 90 managed groundfish stocks, 

64 of which are currently managed within stock complexes. These stock complexes are re-

evaluated by first using a partitioning cluster analysis to group the stocks by depth and 
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latitude. Vulnerability reference points are then established based on the PSA results to 

determine vulnerability groups of low, medium, high and major concern within each 

ecological group. This method is a simple and flexible approach to incorporating vulnerability 

measures into stock complex designations while providing information with which to 

prioritize stock and complex-specific management. 

 Chato Osio et al. (in press), applied PSA to 151 Mediterranean demersal fish species. Out of 

151 species, 58 displayed low vulnerability, 20 medium vulnerability, 25 high vulnerability 

and 48 were considered of major concern. More than half showed a vulnerability, e.g. risk of 

being overfished, greater than the stocks currently assessed in the Mediterranean Sea. Most of 

the cartilaginous fish fell in the high and major concern areas. With generalized mixed models 

the exploitation ratio ( / MSYF F ) of assessed stocks was regressed against PSA scores and 

area, and a statistically significant correlation was found. Using this result, assessed stocks 

were used as a training set to predict the exploitation of un-assessed stocks. The prediction 

relies on a number of assumptions on targeting, representativity of the assessed stocks and 

number of available stock assessments. 

 Cope et al. (in press) developed and introduced a prior on relative stock status using PSA 

vulnerability scores. Data from U.S. west coast groundfish stocks (n=17) were used to 

develop and then test the performance of the new relative stock status prior. This 

predictive relationship, as well as the default prior was then used to test the performance 

of these stock status priors in data-reduced applications conducted within a common age-

structured framework. 

 Sustainability Assessment for Fishing Effects (SAFE), originally developed for risk 

assessment of bycatch species in the Australian Northern Prawn Fishery (Brewer et al. 2006, 

Zhou and Griffith 2008, Zhou et al. 2009), has been extended to other fisheries by Zhou et al. 

(2011). SAFE uses similar data (but fewer attributes) as in the PSA method and may be 

regarded as a quantitative version of PSA. It has been recommended as the first choice (over 

PSA) for assessment of bycatch species in Australia (Smith et al. 2014). The method consists 

of two major components: indicators and reference points. SAFE focuses on one single 

indictor, the fishing mortality rate, because of a lack of data for estimating biomass for the 

majority of bycatch species. The impact reference point represents the level of mortality that 

would theoretically cause a population to eventually equilibrate to the associated population 

reference point level. Instead of using time series of catch data and age composition, the 

SAFE derives fishing mortality rate through estimation of spatial overlap between species 

distribution and fishing effort distribution. For the second component, the biological reference 

points (BRPs), SAFE derives these from life-history parameters that are widely available for 

many species rather than from time-series of fisheries data (Zhou et al. 2012b). SAFE has 
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been applied to sustainability assessment of more than 400 fish bycatch species in the prawn 

trawl fisheries in Australia (Brewer et al. 2006, Zhou and Griffiths 2008, Zhou et al. 2009a, 

Zhou 2011). In addition, the method has been applied to sea snakes impacted by prawn 

trawling (Milton et al. 2007, Zhou et al. 2012a).  After its initial application in the prawn 

fisheries, SAFE has been extended to a dozen major fisheries in Australia involving hundreds 

bycatch species (Zhou et al. 2007, 2009b, 2011, 2012c, 2013; Zhou and Fuller 2011).  

 

 

 

2.2.3 Length Length-based decision tree  

 

Prince (2010) developed a reef assessment decision tree for the western abalone fishery of Victoria, 

Australia. This decision tree assigns a population status to each reef and is used for setting harvests. 

The initial tier of the decision tree is based on medium to long-term trends (5-15 years) in catch or 

effort data for each reef, with subsequent tiers based on the shape and appearance of the abalone 

shells by using rapid visual assessment (RVA). 

 

 

 

Figure 8: The decision tree used to categorise abalone stocks in Australia based on shape and size of harvested 

abalone (taken from Prince 2010). 
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Assumptions: 

 

Input: Reef-code effort and catch and the appearance of the abalone shells 

 

Advantages: The rapid visual assessment (RVA) is a crude yet powerful tool for judging population 

status and developing harvest policies. It motivates the abalone divers to engage directly in the 

management process. RVA allows for the rapid assessment of reefs by interviewing divers or 

organising workshops. 

 

Disadvantages: The main disadvantage is that the method generates qualitative outcomes that are 

difficult to translate into quantitative management advice. The method relies on the memory and 

power of observation of abalone divers. This type of survey poses questions about potential bias, for 

example the effect of spatial range of observation relative to the stock. 

 

Application and reviews: 

 Prince (2010) reports that the reversal of the typical “top-down” approach to fisheries 

management, where the reef is assessed by industry, is gaining popularity for setting regional 

TACCs and used more widely through the Australian abalone fisheries. Based on the 

implementation success of this method, he strongly recommends the collaborative 

involvement of local fishers in data collection, assessment and management. 

 

 

 

2.2.4 Traffic-light framework 

 

Caddy (1999, 2002) developed a simple semi-quantitative approach to precautionary fishery 

management that is suitable for application to data-poor stocks. Precautionary management objectives 

are prioritised according to a list of qualitative and semi-quantitative criteria organised into four 

tables: landings trends, environment and ecosystem, the stock(s) and the fishery. The scoring of the 

characteristics allows for a semi-quantitative comparison between stocks/fisheries and can be used to 

identify which stocks/fisheries are most in need of research and management action. The Table also 

suggests simply formulated precautionary reference points, e.g. size-based reference points that are 

readily understood by the fishery stakeholders. The traffic-light system incorporates a suite of limit 

reference points to provide progressively precautionary management response to the status of multiple 

criteria and indices. 
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The harvest control rule is based on the outcomes of multiple limit reference points (LRPs) that 

represent agreed limits to dangerous conditions. If contravened, these manifest as “red lights”. With 

each additional LRP contravention, or red light, the management response becomes increasingly 

severe.  

 

Examples of simple reference points are provided below based on knowledge of the von Bertalanffy 

growth parameters and some idea of fishing selectivity that is typically incorporated in the size-based 

LRPs. Using the per-recruit approximations developed by Beverton and Holt (1957), total mortality 

rate, Z, can be expressed in terms of the mean length of fish in the catch: 

 

 
( )

( )
( )c

L L
Z F M

L L
  (2.1) 

 

where L is the maximum length at maximum age, mL is the mean length of the fish in the catch, cL

is the length at first capture, and is the growth coefficient. Substituting mL for L , a suitable LRP is 

given by: 

 
( )m

LRP

m c

L L
Z

L L
 (2.2) 

If current total mortality exceeds the LRP ( LPRZ Z ), the light turns red and management response 

becomes more restrictive. 

  

If 
mL L , the size of first capture needs to be increased. An appropriate size limit is given by: 

 m
c m

L L
L L

M
 (2.3) 

 

If five or more LRPs are contravened (activating five red lights), the fishery is closed until three or 

four lights turn green again. 

 

Assumptions: The criteria will be scored objectively and without bias. The LPRs are realistic and 

based on reliable parameter estimates,   

  

Input: Qualitative and semi-quantitative knowledge of the fishery and of the life-history parameters of 

the stock.  
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Advantages: The method is geared towards data-limited fisheries and aids prioritising management 

options. The method is simple and the list of semi-quantitative criteria can accommodate direct 

observations of fishers and promotes involvement by all stakeholders. This approach can be used in 

conjunction with quantitative methods. 

 

Disadvantages: Management decisions based on qualitative criteria are difficult (perhaps impossible) 

to simulation test so that it becomes difficult to ascribe any extent of reliability. Combining (and 

assigning suitable weighs to) multiple indicators in a harvest control rule may be difficult: not all 

criteria are equally important, or independent. 

 

Applications and Reviews: 

 Halliday et al. (2001) investigated the use of a traffic light method as a framework for 

precautionary fishery management. The method was applied to Northwest Atlantic shrimp 

stocks and some DFO Scotia-Fundy Region groundfish stocks.  
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Qualitative and semi-quantitative methods 

Assumptions Qualitative information and/or scoring of attributes and rankings are objective 

and unbiased. 

Advantages Qualitative and semi-quantitative methods promote a partnership approach 

between all stakeholders. 

Expertise from different disciplines can be combined and integrated. 

Qualitative information from various sectors can be used to reconstruct time 

series data and to inform qualitative assessment model assumptions and 

parameter choices (e.g. for catchability). 

Qualitative knowledge and methods can be used to construct Bayesian priors. 

Disadvantages 

 

The feedback is primarily subjective rather than mainly objective. 

It is difficult to quantify qualitative information and outcomes. 

Misinformation and hidden agendas may render these methods unreliable. 

These methods are generally associated with high levels of variability and bias. 

Qualitative approaches are difficult, if not impossible, to simulation test. 

 

Table 2: Summary of general assumptions and advantages/disadvantages associated with qualitative and semi-

quantitative methods. 
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2.3 Per-recruit and length-based Methods 

 

To evaluate if a stock is subject to over-exploitation, it is desirable to compare current spawning stock 

biomass and fishing mortality estimates to their corresponding values at MSY. However, for data-

poor stocks, such estimates are not usually available. This section explores per-recruit methods that 

can be used when biological data such as growth, natural mortality and maturity are available, in 

addition to possibly some length composition data to estimate management reference points. 

 

2.3.1 Beverton-Holt 

 

The analytic methodology described below is the standard per-recruit analysis first developed by 

Beverton and Holt (1957). 

 

For continuous fishing, we have: 

 
  for 

( ) for 

c

c

MN t tdN

F M N t tdt
 (2.4) 

where F  and M  are the instantaneous fishing mortality and natural mortality rates, and ct  is the age 

at first capture. 

 

The equilibrium population numbers at age are then given by 

 
( )( )

 for 

  for c c

Mt

c

t Mt F M t t

c

Re t t
N

Re e t t
 (2.5) 

where R  is the number of recruits. 

 

Assume a von Bertalanffy (1938) form for the growth of fish in terms of length: 

 0( )
(1 )

t t

tL L e  (2.6) 

where tL is the length at age t , L is the asymptotic length, is the growth coefficient, and 0t is the 

age corresponding to zero length. 

Assume further a length-weight relationship of the form: 

 ( )b

t tw a L  (2.7) 

where a and b are the length-weight coefficients (a cubic relationship between length and mass with

3b  is assumed here). 

 

Let mt the age at maturity be such that m ct t , then the equilibrium spawning biomass is given by: 
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m

t t

t

SSB w N dt  (2.8) 

After integration the equilibrium spawning biomass per recruit is given by: 

 

 
( )( )

/ ( , )c m cMt M F t t

mSSB R w e e g F t  (2.9) 
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Similarly, the equilibrium yield is given by: 

 

c

t t

t

Y w FN dt  (2.11) 

Integrating over the interval from ct  to infinity gives the yield per recruit: 

 / ( , )cMt
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where 
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The number (per recruit) of fish caught is given by: 

 
( )

c

c
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t

t

Fe
C FN dt

F M
 (2.14) 

so that the mean length (per recruit) of fish caught is: 

 /

c

t t

t

L L FN dt C  (2.15) 

and after integrating it follows that: 
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 (2.16) 

After substitution, the total mortality rate, Z , in terms of mean length is given by: 

 
( )

( )
( )c

L L
Z F M

L L
 (2.17) 

 

Input: Life-history parameters, M , L , , mt  
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Assumptions: The main assumption is that the stock is equilibrium, i.e. recruitment and mortality are 

time-invariant. For the Beverton-Holt formulation, the somatic growth curve is assumed to follow a 

von Bertalanffy form, and the weight is proportional to length cubed. In addition, selectivity is 

assumed to be knife-edged with uniform selectivity above the age at first capture, ct .  

 

Advantages: Per recruit methods can be applied when fishery data are sparse and only growth 

parameters are available for the species (or a similar species). They provide basic management 

reference points, for example a minimum length at first capture, that could be incorporated in harvest 

control rules. 

 

Disadvantages: Equilibrium conditions are unlikely to hold in most circumstances. In particular, this 

method is not suitable for stocks with high recruitment variability. 

 

Applications and reviews: 

 Per recruit analysis is commonly applied to both data-poor and data-rich stock assessments. 

Yield per Recruit (YPR and YPRLEN) software is available from the NOAA Fisheries 

Toolbox. The latest version allows the user to incorporate uncertainty in weights-at-age, 

natural mortality, maturity and fishing selectivity. The software also provides equilibrium 

estimates for management quantities such as MSY, MSYF and MSYB  if a stock-recruit 

relationship is specified. [nft.nefsc.noaa.gov] 

 O’Farrell and Botsford (2005) applied the per-recruit model to estimate the Fractional Change 

in Lifetime Egg Production (FLEP) from length frequency data from pre-exploitation (or 

early) and current period of the fishery in addition to the life-history parameters for the 

species. The fractional change is the ratio of the lifetime egg production (LEP), or equilibrium 

egg-production per recruit, from the early compared to that of the late period. 

 Gislason et al. (2008, 2010) investigated the relationship between natural mortality, M, and 

the von Bertalanffy growth parameters, and length. 

 Le Quesne and Jennings (2012) developed an age-structured population model based on 

Beverton-Holt life-history invariants to establish reference points and the sensitivity of a 

species in the Celtic Sea to fishing mortality. 

 ICES (2012a) applied per recruit models to stocks to estimate yield and spawning biomass per 

recruit reference points based on the assumption of knife-edged recruitment to the fishery at 

age 1 and 2. Reference points calculated for WKLIFE stocks were based on the life-history 

relationships of Le Quesne and Jennings (2012) and a von Bertalanffy / L relationship of 

Gislason (2008). They show that the per recruit reference points are sensitive to the assumed 

selectivity pattern, highlighting the need for stock and fishery specific selectivity patterns. 
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WKLIFE demonstrated that F reference points can be generated for data-poor stocks on the 

basis of very limited life-history data. 

 

2.3.2 Spawning Potential Ratio (LB-SPR)  

 

Beddington and Kirkwoord (2005) explored how the life-history ratios can be used to assess data-poor 

stocks when adopting the simplifying Beverton-Holt invariants. Hordyk et al. (2014a) developed a 

more general model to provide a link between the /M , /mL L , and /F M ratios and the 

equilibrium length composition, the spawning biomass-per-recruit and the spawning potential ratio 

(SPR) of the stock. 

 

The unfished population numbers per recruit can be approximated by: 

 max/ exp( )xN R Mxt  (2.18) 

 where R is the equilibrium number of recruits, M is the natural mortality rate (assumed to be age 

and time invariant) and max/x t t is the age of the fish expressed as a ratio of the maximum age maxt . 

 

The natural mortality rate is inversely proportional to longevity, so that: 

maxln /M P t  

where P denotes the proportion of fish that survive to the maximum age. In terms of P , the population 

numbers per recruit is simply: / x

xN R P . 

  

Assuming von Bertalanffy growth (see equation  (2.6)) with 0 0t  and max ln /t P M , the growth 

equation can be expressed in terms of /M : 

 
/( / )(1 )x M

xL L P  (2.19) 

Similarly, the equilibrium numbers per recruit can be expressed in terms of the /M ratio: 

 
// (1 / )M

x xN R L L  (2.20) 

The corresponding biomass per recruit in terms of the /M ratio is given by: 

 
// (1 / ) ( / )M b

x x xB R L L L L  (2.21) 

where b is the weight exponent. 

  

The length at which the biomass per recruit is a maximum is given by (Beddington and Cooke 1983): 
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M b
 (2.22) 
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where b is usually set equal to 3. Assuming knife edged maturity and that length-at-maturity occurs at

optL , then the /mL L ratio can be derived from the /M ratio: 

 / / ( / )mL L b M b  (2.23) 

or inverting:  

 / / ( / )mM b L L b  (2.24) 

 

Under these assumptions, the spawning potential ratio (SPR) in terms of the /M , /F M and 

/mL L  ratio is given by: 
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Given an estimate for /M , the /F M ratio can be estimated from the length composition of the 

catch by minimising the negative of the log-likelihood (assuming a multinomial distribution):  

 ln ln( / )P

i i i

i

L O P O  (2.26) 

where iO and 
P

iO are the observed number and proportion of the catch in length class i , respectively, 

and iP is the predicted proportion in the catch calculated by multiplying the age structure of the 

vulnerable portion of the population by the transpose of the catch age-length transition matrix and 

standardising (Hordyk et al. 2014a). 

 

 

Input: Length composition data in addition to the life-history ratios /M and /mL L . 

 

Assumptions: The main model assumption is that the stock is in equilibrium with constant recruitment 

and total mortality. 

 

Advantages: LB-SPR can potentially provide a cost-effective assessment method for data-poor 

fisheries: length frequency data are cheap to collect and generally available for data-poor fisheries. 

This method does not require time series data such as total historical catches or an index of abundance 

which are often lacking (or unreliable) for data-poor fisheries. The two life-history ratios required as 

input ( /M and /mL L ) have been shown to be conservative across family groups and can 
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typically be derived from similar (data-rich) species. This method, linked to a harvest control rule that 

generates catch advice, has been simulation tested within a MSE framework. 

 

Disadvantages: The population size structure is not sufficiently informative for low /M species 

which have many adult age-classes of the same size – for such species/stocks a direct index of 

abundance is required for management purposes. Furthermore, the model does not account for 

changes in fishing mortality (e.g. sudden changes in response to management regulations).  

 

Applications and reviews: 

 Using life-history ratios, Beddington and Kirkwood (2005) developed techniques to allow for 

the estimation of MSY and MSYF from the growth parameters, the length at first capture and 

the steepness of the stock-recruit relationship in data-poor situations.  

 Andersen and Beyer (2013) developed a framework to assess the exploitation status of data-

poor stocks based on the life-history invariants and size information in the catch.  A single 

parameter, the asymptotic size, is used to characterise the life-history parameters describing 

growth, mortality and recruitment. This framework incorporates stock-recruitment function to 

estimate fishing mortality, F , and the biological reference point, MSYF . 

 Prince et al. (2014) performed a meta-analysis of the relationship between the size, age and 

reproductive potential of 123 species. The results of this study do not support the common 

assumption of unique values for the life-history ratios (the so-called Beverton-Holt life-

history invariants BH-LHI) and that assuming a /M ratio of 1.5 leads to overestimating the 

productivity of long-lived species.  Rather, they observed considerable but predictable natural 

variation in the life-history ratios of different species. However, there is potential to “borrow” 

knowledge from well-studied data-rich species and apply these life-history ratios to similar 

data-poor species.  

 Hordyk et al. (2014b) evaluated the performance of LB-SPR through simulation testing under 

a variety of conditions and assumptions: data are simulated for four species with diverse life-

history parameters and /M  in the range 0.53 to 3.05, based on the meta-analysis of Prince 

et al. (2014). In particular, they investigated sensitivity of the model to recruitment variability 

and dome-shaped selectivity, as well as error in input parameters. They suggest that the 

precision of the SPR estimate can be improved by increasing the sample size of the length 

measurements (bins) and propose a sample size of at least 1000 to capture the size 

composition of the stock. 

 Kokallis et al. (2014) conducted a simulation study based on the framework developed by 

Andersen and Beyer (2013) with direct estimation of asymptotic size. The simulation study 

compares the reliability of the assessment under varying degrees of data availability: no prior 
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knowledge of the life-history parameters at one extreme, to scenarios where one or more 

parameters are known. Without prior knowledge of the life-history parameters, it is possible 

to correctly assess if fishing mortality is below MSYF  in more than 60% of cases, and almost 

always correctly classify if the stock is subject to overfishing. Performance is greatly 

improved with knowledge of the ratio of age-dependent natural mortality and growth (i.e. the 

age-dependent equivalent of the /M ratio). Their study demonstrates that it may be 

possible to classify if data-poor stock is subject to over- or under-fishing, although the extent 

to which F is above/below MSYF can only be determined with substantial uncertainty. 

 

2.3.3 Length-based per-recruit  

 

Gedamke and Hoenig (2006) extended equilibrium model described in Section 2.3.1 to incorporate a 

sudden and permanent change in total mortality from 1Z to 2Z . The mean predicted length d years 

after the change in mortality, at age cg t d  is given by: 
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where 2( )tN Z denotes the number of fish younger than age g , and 1 2( , )tN Z Z are the number of fish 

of age g and older. After integration and simplification, the mean equilibrium length d years after the 

change in mortality is: 
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The total mortality rates can be estimated by minimising the negative of the sample-size-weighted 

log-likelihood: 

 
2 2ln ( ) / 2 ln /obs

y y y y

y

L m L L m  (2.29) 

 where 
obs

yL and yL are the observed and model predicted mean length in year y , 
ym are the number 

of fish in the sample greater than cL , and is the estimated standard deviation of the residuals.  

 

Input data: The mean length of catch time series,
y

obsL , the von Bertalanffy growth parameters, and if 

applicable, the year(s) in which mortality changed, identified by sudden changes in observed mean 

length. 
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Assumptions:  

The assumptions are the same as those listed in Section 2.3.1, but here one or more changes in 

mortality are allowed: 

1. Deterministic asymptotic growth, with  and L  known. 

2. Constant recruitment over time. 

3. Mortality-at-age is constant for all fish aged ct and older. 

4. Selectivity is knife-edged, with all fish larger than cL  fully selected by the fishery. 

 

Advantages: This method allows for the estimation of total mortality from mean length data that are 

usually readily available for most fisheries. Accounting for one or more changes in mortality renders 

this method more realistic and allows for the incorporation of longer time series of length data. 

 

Disadvantages: This method is only applicable if selectivity is knife-edged, i.e. fish larger than the 

size of first capture, cL , are all equally available to the fishery. This method is in this form not reliable 

if the fishing gear targets age-classes selectively, but can be generalised to take that into account. 

From a numerical point of view, this method is very time-intensive (searching for the most likely 

combination of F breaking points) which makes it difficult to simulation test.   

 

Applications and reviews: 

 Gedamke and Hoenig (2006) assessed two goosefish stocks in the north-eastern United States 

based on 40-year mean length time series derived from the NMFS groundfish trawl survey 

length-frequency data.  A single change in total mortality was assumed for the southern stock 

resulting in estimates for the pre- and post-1977 fishing mortality rates of 0.31yr
-1

 and 0.6 yr
-1

 

respectively. The method detected two changes in fishing mortality for the northern goosefish 

stock: an increase from 0.14 yr
-1

 to 0.29 yr
-1

 in 1978, and a further increase to 0.55 yr
-1

 in 

1987. 

 

 

 

2.3.4 Length-based indicators ,  and mat opt megaP P P  

 

To avoid undue depletion of stocks, Froese (2004) proposes three simple fishery indicators based on 

length composition data: 
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1. the proportion of mature fish in the catch ( matP ), with a target of one, 

2. the proportion of fish of optimum length corresponding to highest yield from a cohort (
optP ), 

with a target of one, and  

3. the proportion of large mature “mega-spawners” in the catch (
megaP ), with a target of zero 

although 0.3 to 0.4 is considered a reasonable proportion. 

 

These three quantities provide some measure of the sustainability of catches. Froese argues that, to 

ensure sustainability, the catch should consist mainly of mature fish of a size that maximises the yield 

from a cohort, while the very large mature animals should rather be conserved to maximise future 

spawning.   

 

The three catch-by-length proportions are given by: 
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L
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where LP is the proportion of the catch in length class L , 

 matL is the length at 50% maturity, 

 maxL is the maximum length, and  

 
optL is the length at which the biomass of a cohort is maximised. 

 

A combined indicator,
obj mat opt megaP P P P , is introduced to differentiate amongst selectivity 

patterns (Cope and Punt 2009): 

 

a) 1objP  distinguishes a fishing selectivity pattern associated with growth and recruitment 

overfishing, 

b) 1 2objP  corresponds to a (logistic) selectivity pattern that includes some immature fish of 

suboptimal length, and  
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c) 2objP is indicative of sustainable catches of optimally-sized fish and bigger. 

 

Given matL  and
optL  and estimates for the three indicators (2.30), (2.31) and (2.32), Cope and Punt 

(2009) construct a decision tree to indicate when a stock is above or below the management reference 

points in the absence of direct estimates of fishing mortality rate, F , spawning biomass, 
spB , and 

recruitment compensation characterised by steepness h . 

 

 

 

Figure 9: The decision tree (taken from Cope and Punt 2009) to aid determination of stock status in data limited 

situations. The combined metric,
objP , distinguishes the selectivity pattern of the fishery (grey boxes). The matP

or
optP values are then used to indicate if the spawning biomass of the stock is at or above the target reference 

point of 00.4B . Note that a 
optP value of one is non-informative about stock status. 

 

Note that, according to the decision tree above, stocks with matP  and
optP values less than one can 

theoretically be harvested sustainably, while a 
optP value of one (i.e. harvesting only fish of optimal 

size) could potentially lead to major (undetected) decreases in population biomass. 

 

From a fisheries management point of view, these metrics can be incorporated in a HCR that adjusts 

catches up or down in relation to perceived stock status and spawning biomass target and limit 

reference points. For example, a
optL strategy could be adopted where 2objP and 1matP are both 

heavily enforced. This rule would ensure that only mature and optimally sized fish are caught.  
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Similarly, a penalty can be incorporated to discourage fisheries from catching primarily juvenile fish (

1objP ). 

 

Assumptions: The main assumption is that the catch-at-length data is representative of the entire catch 

of the fishery. 

  

Input: 

Input data consist of catch-at-length data from the fishery and estimates of matL and 
optL . 

 

Advantages: Length composition data is easy to collect and usually readily available. These simple 

and intuitive indicators encourage participation by all stakeholders. They can potentially be used (both 

individually and in combination) in HCRs to provide a basis for TAC advice, although this would 

require prior MSE or, more specifically, an MP approach to determine robustness of such a control 

rule. 

 

Disadvantages: This method does not provide catch advice. The targets are unlikely to be practical for 

some fishing sectors. Caution should be taken when using mean size and size composition data as 

indicators for stock depletion due to their potentially imprecise albeit informative nature. Cope and 

Punt (2009) show that there is little contrast between estimates of the length-based indicators at 

different depletion levels when h (steepness) is low. This is problematic as h is unknown (not well 

estimated) for most species, and more so when data are limited. This lack of contrast will negatively 

affect the performance of HCRs based on these length-based indicators.  

 

Applications and reviews: 

 

 This method was initially introduced by Froese (2004) to avoid growth and recruitment 

overfishing. Froese also considered that application of these simple indicators would 

encourage participation of all stakeholders in the fishery, including fishers, managers and 

politicians. 

 

 Cope and Punt (2009) investigate the performance of monitoring stock exploitation in terms 

of these length-based indicators via simulation testing. They develop Froese’s concepts 

further by exploring the link between these length-based indicators and fishing mortality and 

spawning biomass with the aim to develop simple harvest control rules (HCRs) for data-

limited stocks. Their study demonstrates insensitivity of results to different life-history 
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parameters, thereby rendering this method suitable to a wide range of stocks. The decision 

tree aids the interpretation of stock status to provide flexible management advice. 

 

 Babcock et al. (2013) applied the length-based indicators in combination with the Beverton-

Holt life-history parameter estimates to determine if the most common species caught at 

Glover’s Reef marine reserve, Belize, were overfished (
targetB B ) and experiencing over-

fishing ( F M ). In particular, they investigated the importance of uncertainty about stock 

status estimates based on poor estimates of the life-history parameters by using Monte Carlo 

simulations. For example, estimates for the life-history parameters typically span a broad 

range for data-poor reef species which in turn leads to high levels of uncertainty about the 

management status of the species (Cummings et al. 2014).  

 

 

2.3.5 Length-based Harvest Control Rules (L-HCRs) 

 

For data-poor fisheries for which no reliable index of abundance exists, data may be available for the 

average individual length or mass of the fish caught each year. Length-based methods are attractive in 

data-poor situations as these data are easy and cheap to collect. Based on the per-recruit analysis, the 

mean length of fish harvested may be used as an indicator of the level of depletion of the resource to 

set yearly catches or some similar management control measure. However, the mean length of fish 

caught does not provide a direct index of abundance and a time lag is to be expected before a decrease 

in biomass is reflected in the length data. These control rules therefore need to incorporate additional 

precautionary measures to ensure early detection of over-fishing and stock depletion and to adjust 

catch advice accordingly. The challenge for these rules is to react fast to perceived trends in fishing 

mortality and abundance while ignoring the noise component in the length data. 

 

2.3.5.1 Stepwise Constant Catch HCR 

 

This HCR is a simple constant catch strategy with a step up or down depending on whether some 

threshold is reached in terms of the recent mean length of fish caught (Geromont and Butterworth, 

2014). The rationale underlying this type of MP arises from considerable uncertainty regarding the 

status of the resource coupled with the fact that mean length data do not constitute a direct index of 

abundance and can be very noisy (consequently having limited information content). It is therefore 

not defensible to adjust the catch up or down annually as the mean length increases/decreases because 

these fluctuations could bear little relation to resource population size, but rather arise from effects 
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such as observation errors. For this HCR, the catch is left unchanged until strong evidence (in terms of 

a large change in mean length of the resource harvested) suggests that the catch should be increased or 

decreased. Given this inertia in the interests of stability, clearly such HCRs need to be tuned to be 

conservative (risk averse). 

 

No restriction on the inter-annual change in catch advice is suggested for this class of HCRs as the 

step-size should remain fixed, and large decreases in terms of double step downs may be necessary for 

severely depleted resources. 

 
1y yC C step  (2.33) 

 

 where 
yC is the total catch in year y, step  is typically defined as a percentage of the recent average 

catch,  
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C y C for the preceding 1y years (e.g. Geromont and Butterworth (2014a) suggest a 

step size of 5% avestep C ). 

 

For the first year of the projection period an appropriate “starting level” must be chosen (which is not 

necessarily equal to the actual catch of the previous year). 

 

The catch for the next year is increased/decreased only if the recent mean length is more than a 

predetermined percentage higher/lower than the average of historic mean length of catch. For 

example, let: 
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 is the average mean length over the most recent 1y  years, and 
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 is an average historical mean length (which remains fixed over the projection  

years). 

The catch advice is only increased by a single step for year y+1 if 
ratio

yL is greater than the upper 

threshold On the other hand if 
ratio

yL  falls below the lower threshold, the catch is decreased by a step. 

As a precautionary measure multiple step-downs are permitted. For this HCR a greater upper 

threshold is typically chosen to ensure that the catch does not increase too rapidly, which runs the risk 
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of unintended resource overexploitation (e.g. lower/upper thresholds of 0.98 and 1.05 were selected 

by Geromont and Butterworth 2014a). Symmetrical lower/upper threshold values may be appropriate 

for a resource for which the status is judged to be healthy given a coarse preview of the history of the 

fishery. However, to ensure adequately low inter-annual variability in annual catches, higher 

thresholds for both increasing and decreasing the annual catch may be necessary.  

 

Input: Mean length of the catch data and the recent average catch. 

 

Advantages: Under stable conditions, this rule is simple constant catch strategy with some 

precautionary limits built in, so adds industrial stability.  

 

Disadvantages: This rule may not be able to reduce catches quickly enough at very low biomass 

levels. Choosing the appropriate thresholds can be tricky: if the lower threshold is chosen too high, 

the HCR might react to noise rather than signal in the data; if too low, the rule will react too slowly, 

with very negative consequences for the resource. 

 

Reviews and applications:  

 Geromont and Butterworth (2014a) simulation tested this HCR for a depleted stock of 

medium productivity. This rule showed promise, but further testing and tuning is required to 

ensure adequate precaution is applied at low biomass levels. 

 

2.3.5.2 Length target HCR 

 

This HCR is similar to the Tier 4 control rule for Australian fisheries, which is based on a target 

CPUE level as tested in Wayte (2009); here, however, annual mean length of fish caught is used as an 

indirect index of resource abundance in the absence of a CPUE or survey index. A target mean length, 

targetL , is chosen with the intention to achieve some associated target level of abundance. The TAC 

advice for the next year is given by:  
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target recent 0
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1 2
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where  0 1w  is a smoothing parameter, 
targetC is a target catch associated with the target length 

(chosen as an average over a period of stable catches),
recent

yL  is the average mean length over the most 

recent years,
targetL is the target length (informed by equilibrium per-recruit analysis), and

0L  is the 

limit mean length below which future catches are reduced quadratically rather than linearly with L .  

 

Input: Mean length time series,
yL . 

 

Advantages: The HCR is intuitive and defined in terms of target and limit reference points. Given a 

long mean length time-series, the target length can be derived from a stable period in fishery, or 

alternatively, it can be determined by applying per-recruit analysis. 

 

Disadvantages: There is a lag time between a decline in biomass and a decrease in mean length. This 

rule therefore needs additional precautionary measures to avoid undetected depletion. 

 

 

Reviews and applications:  

 Geromont and Butterworth (2014a) simulation tested this HCR for application to data-poor 

stocks with alternative choices for the control parameters to optimise risk-yield performance 

and achieve quick recovery for “severely depleted” stocks. Summary statistics showed that 

this length-based rule performed adequately compared to HCRs that rely on a direct index of 

abundance.  

 

 

2.3.5.3 F ML Reference point HCR 

 

Jardim et al. (2015a in press) developed and simulation tested this rule on 50 stocks (pelagic, 

demersal, deep sea and Nephrops) assuming two exploitation scenarios (development and over-

exploitation). This HCR adjusts the catch advice up or down if the current mean length in the catch is 

above or below the mean length when fishing at F M . The catch advice for the next year is given 

by: 

 1 1

SQ

y y

F M

L
C C

L
 (2.36) 

where 
1yC is the total catch in the previous year, 

SQL is the status quo (current) mean length in the 

catch given by: 
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,
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a y
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C L

L
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and F ML is the mean length in the catch associated with a fishing mortality rate F that is equivalent 

to the natural mortality rate M, approximated by: 

0.75 0.25F M cL L L  

where cL is the length at first capture. 

These length-based reference points 
SQL and F ML  serve as proxies for current fishing mortality, 

SQF  

and the fishing mortality rate required to achieve MSY, MSYF . 

 

Input: Mean length time series,
yL , and growth parameters estimates cL and L . 

 

Advantages: The rule is simple and based on readily available data.  

 

Disadvantages: This type of length-based control rule is not always able to adjust catch advice 

effectively, particularly at low biomass levels. The length data are generally very noisy with limited 

information content regarding biomass trends. The F ML reference point would require stock-specific 

tuning (and take depletion levels into account) to achieve adequate risk-averse performance. 

 

Reviews and applications:  

 Jardim et al. (in press) simulation tested this HCR and found that it was able to reverse 

decreasing trends in biomass at catch levels well below MSY. However, the rule did not 

prevent over-exploited stocks declining further. No implementation error was incorporated in 

this simulation study. 
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Per-recruit and length-based methods 

Assumptions Per-recruit methods assume equilibrium conditions hold, with recruitment and 

natural mortality constant. 

Length composition data are representative of the total catch distribution. 

The mean length index is a reliable indicator of trend in biomass. 

Advantages Per-recruit methods: 

These methods are typically applicable in cases where time-series data are 

sparse or non-existent, as long as there is knowledge of the life-history 

parameters. As such they provide cost-effective management options for data-

poor stocks. 

They provide an estimate of total mortality and also basic management 

reference points. 

These methods may often be used in combination with other approaches. 

 

Length-composition methods: 

Length data are easy and cheap to collect. 

Length-based indices, and their use in harvest control rules, are simple to 

understand and intuitive to implement. 

These simple approaches encourage the participation of stakeholders. 

Disadvantages Per-recruit methods: 

These methods do not take dynamic effects into account. 

Equilibrium conditions are unlikely to hold. 

These methods are not suitable for species with high recruitment variability. 

They rely on accurate estimates of growth parameters and natural mortality, 

which are difficult to estimate. 

 

Length-composition methods: 

Mean length is usually a rather imprecise indicator of stock depletion. 

There is a lag in feedback from the mean length data. 

Extra precaution is required at low levels of depletion. 

Control rules are often not able to distinguish between noise and trend in the 

mean length time series. 
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Table 3: Summary of general assumptions and advantages/disadvantages associated with per-recruit and length-

based methods. 

 

2.4 Catch-based methods 

 

A number of data-poor assessment methods that rely on catch-data alone to estimate stock status have 

been proposed and applied in the past.  Also termed ORCS (Only Reliable Catch Stocks) methods, in 

their most rudimentary form, these methods typically assign different fishery development stages to a 

stock associated with levels of catch in relation to the maximum historical catch. However, these 

methods have since been subjected to a critical evaluation and shown to be biased when applied in the 

absence of additional information (Branch et al. 2011, Daan et al. 2011 and Carruthers et al., 2012). 

As a consequence, a number of model-based methods have been proposed to assess data-poor stocks 

when a reliable catch time series is available, in addition to supplementary data, for example some 

knowledge of current depletion and/or information of the life-history of the species/stock, or similar 

species/stock.   

 

The subsections that follow list a number of catch-only methods according to their data requirements 

and model complexity. 

 

2.4.1 Catch classification method  

 

Introduced by Froese and Kesner-Reyes (2002), this method involves examining the catch time series 

to classify the status of a stock/fishery according to five development stages: undeveloped, 

developing, fully exploited, overfished and collapsed. This method is based on the assumption that 

catches are initially low for a developing (and unregulated) fishery, rise until the fishery is fully 

exploited, then decline due to overfishing, and finally decline further until stock collapse. 
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Figure 10: Transition phases of a typical fishery. This plot is copied from Froese and Kesner-Reyes (2002). 

 

The criteria used to assign the different phases are: 

1. Underdeveloped:  (max ), 0.1y y P P  

2. Developing:   (max ),0.1 0.5y y P P  

3. Fully exploited:  0.5P  

4. Overfished:   (max ),0.1 0.5y y P P  

5. Collapsed:   (max ), 0.1y y P P  

where P denotes the production expressed as a percentage of the maximum, max P, and y(max P) 

refers to the year at which max P occurs. 

 

Assumptions: After the maximum catch is reached, the trend in catch is assumed reflect the trend in 

biomass. Furthermore, this method assumes that the fishery developed in the absence of catch/effort 

regulations and other effects (targeting, gear, market changes) that may affect the level of catch.  

 

Input: A complete catch time series,
yC , from the start of the fishery. 

 

Advantages: The method simplifies complex dynamics. Apart from a catch time series, no other data 

are required. 
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Disadvantages: The catch time series alone is not informative about stock productivity and size: total 

annual catches are influenced by factors other than the stock biomass. This method has been shown to 

give an overly pessimistic assessment of stock status.  

 

Applications and Reviews: 

 Froese and Kesner-Reyes (2002) classified the fishing status of over 900 species into 

undeveloped, developing, fully exploited, overfished and collapsed by investigated their catch 

time series.  

 Worm et al. (2006) predicted that all commercially exploited stocks will have collapsed by 

2048 according to stock status estimates based on this method of classification. Accordingly, 

a stock is classified as collapsed if the current catch is less than 10% of the historical 

maximum. However, the methodology used in this study has since elicited numerous rebuttals 

(Branch et al (2011, Daan et al (2011) and Carruthers et al. (2012)).  

 Branch et al. (2011) applied this method to simulated catches fluctuating about a mean value 

to demonstrate that the method was biased toward assessing stocks as developing in early 

years and as collapsed in later years. This is because stocks can only be classified as 

developing before the maximum catch is achieved, and as over exploited or collapsed after 

the maximum catch. This method therefore excludes a more positive view of current stock 

status.  

 Daan et al. (2011) argue that this method is both technically and conceptually flawed and that 

any predictions about stock status derived from it represent flawed prophecies. 

 Carruthers et al. (2012) simulation tested this method for a number of fisheries development 

and overfishing scenarios, and found that it was error-prone and generally provided overly 

pessimistic estimates of stock status. According to this study, the method misclassified a stock 

two-thirds of the time. 

 Froese et al. (2012) responded to the previous three studies, showing that the applied 

simulations were not appropriate for testing of this method, that maximum catches are highly 

correlated with MSY, and that the biomass trends of fully assessed stocks in the Northeast 

Atlantic are consistent with the trends derived from catch classification of these stocks. 

Furthermore, they also stress that this method was developed to better understand trends in 

the global catch data provided by the FAO, and not for application in single stock 

management. 
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2.4.2 Catch-based MSY 

 

Biomass dynamic models may be applied when an index of abundance is available. However, a data-

poor application which relies only on a catch time series, in addition to qualitative information 

regarding the resilience of the stock, has been developed by Martell and Froese (2013) to obtain 

estimates of MSY. Termed a Catch-MSY method, this employs the Schaefer form of the surplus 

production function where MSY is achieved when the biomass is reduced to half the virgin biomass,

K , i.e. employing a fairly conservative production function (compared to, say, a Fox production 

function with / 0.37MSYB K ).  

 

The dynamics of the population is described by the Schaefer model: 

 
1 1

y

y y y y

B
B B rB C

K
 (2.37) 

where yB is the biomass at the beginning of year y , r is the intrinsic growth rate, K is the pre-

exploitation equilibrium biomass, and yC is the total catch (including discards) in year y .  

 

In the absence of an index of abundance from which to estimate the model parameters, the input data 

consist only of a time series of total annual catches, in addition to prior distributions for model 

parameters, r and K , and depletion in the first and final year of the time series. The method involves 

randomly drawing r and K combinations from uniform distributions and assuming a Bernoulli 

distribution to accept/reject ( , )r K  combinations if the biomass in the final year falls inside/outside 

the range assumed for final depletion. Each viable ( , )r K  combination provides an associated 

estimate of MSY ( / 4rK  in terms of the Schaefer production model). The method relies on the 

premises that the observed catches are produced either by a large population with high K  and low 

productivity, r , or alternatively a highly productive but small stock (high r , low K ). For the case 

where the historical catches are too small to distinguish the level of productivity and size of the stock 

(the ( , )r K combination), MSY is likely to be underestimated (Martell and Froese 2013). 

 

Parameter prior distributions: 

Fairly wide plausible ranges need to be defined for the model parameters, for r and K as well as initial 

and current depletion. The type of prior distribution adopted depends on the best available information 

for the stock under consideration. In the interest of generality, Martell and Froese (2013) propose the 

following default distributions. 

1) A uniform distribution is assumed for intrinsic growth rate r . Each stock is categorised 

according to one of four overlapping resilience groups:  
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 high resilience: [0.5,1.5]r U  

 medium resilience: [0.2,1]r U  

 low resilience: [0.05,0.5]r U  

 very low resilience: [0.015,0.1]r U  

2) A uniform distribution for the pre-exploitation biomass, K , is developed from the maximum 

historical catch:  

[max( ),100 max( )]y yK U C C  

3) Uniform distributions for initial and final depletion are based on the catch time series: 

Initial: 1 / [0.5,0.9]B K U  if 1 / max( ) 0.5yC C  

  1 / [0.3,0.6]B K U  if 1 / max( ) 0.5yC C  

Final: / [0.3,0.7]nB K U  if / max( ) 0.5n yC C  

  / [0.01,0.4]nB K U  if / max( ) 0.5n yC C  

 

Input: A catch time-series, yC , and information regarding the resilience of the stock to construct a 

prior for r. 

 

Advantages: 

Martell and Froese (2010) show that only a surprisingly narrow range of ( , )r K combinations result in 

viable stock biomass trajectories. The Catch-MSY method is well suited to provide preliminary 

estimates and distributions of MSY in cases when abundance data are lacking. From a management 

point of view, these MSY distributions can potentially be incorporated in simple harvest control rules 

based on some lower percentile of the interval. 

 

Disadvantages: 

The reliability of estimates for MSY depends on the plausibility of the prior distributions chosen for 

r and K and initial and final depletion, all of which require careful consideration. Knowledge of the 

distribution for MSY is less valuable from a stock management point of view than the distribution 

assumed for depletion, which is required as an input for this method. Data-poor stocks are typically 

associated with limited monitoring of catches and poorly estimated (and often short) catch time series 

with little information about stock productivity and size. Furthermore, this method is not 

recommended for developing fisheries, or lightly fished stocks, as the associated time series of 

catches will not be informative. 
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Applications and reviews: 

 Martell and Froese (2010) applied this method to 146 stocks worldwide for which 

independent MSY estimates, based on comprehensive stocks assessments, were available and 

found good agreement with their results: most of the catch-MSY estimates fell within a range 

of 0.5 to 1.5 of the independent estimate.  

 Simulation results from a comparative study conducted by Rosenberg et al. (2014) indicate 

that catch-MSY performed the best of the catch-only methods considered (panel regression, 

catch-MSY, COM-SIR and SSCOM) across the majority of scenarios tested. In particular, 

catch-MSY was better able to estimate stock status over short time scales than the other 

methods evaluated.  

 

2.4.3 Catch-Only Model (COM) 

 

Based on a combination of a Schaefer biomass dynamic and a logistic effort model, this Bayesian 

approach was developed by Vasconcellos and Cochrane (2005) to predict catches over time under 

assumptions about effort trends, and use this as a basis to estimate the values of parameters of the 

Schaefer model. Based on assumptions about temporal trends in fishing effort, this method 

incorporates only a catch time series in the likelihood function to assess the status and dynamics of a 

stock. In an unregulated fishery, trends in historical catches are primarily a reflection of changes in 

the fishing effort as the fishery evolves: there is typically a rapid increase in effort during the 

developing stage, stabilising as the fishery reaches maturity, which is followed by a decrease in effort 

once the senescent stage is reached. This method is therefore applicable to data-poor fisheries that 

were/are not under any formal management (i.e. no external effort/catch controls), or that portion of 

the catch time series before effective management was introduced. 

 

In terms of a linear effort model, fishing effort, yE , is assumed to increase linearly from the start of 

the fishery: 

 1 0y yE E xE  (2.38) 

where 0E is the effort at the first year of the fishery, and x is a multiplier that defines the rate of 

increase in effort over time. 

 

When employing a logistic-like model, the annual fishing effort is assumed to increase from the start 

of the fishery until the bionomic equilibrium is reached: 

 1 [1 ( 1)]
y

y y

BE

B
E E x

B
 (2.39) 
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where BEB aK denotes the bionomic equilibrium, given as a proportion of the pre-exploitation 

biomass, K , and yB is the stock biomass in year y.  

 

A Schaefer model is used to describe the stock dynamics:  

 
1 (1 )

y

y y y y

B
B B rB C

K
 (2.40) 

where r is the intrinsic growth rate, and yC is the observed catch in year y . 

 

Finally, the standard assumption is made that the estimated catch in any year is directly proportional 

to the product of biomass and effort so that: 

 y y yC qE B  (2.41) 

where q is the constant of proportionality, so that substituting (2.39) and (2.40) into (2.41) gives: 

 
1 [1 ( 1)][ (1 ) ]

y y

y y y y y

B B
C qE x B rB C

aK K
 (2.42) 

 

Assuming that the stock was at carrying capacity at the start of the fishery ( 0B K ), and that 

expected and observed catches are identical for the first year  0 0 /qE C K  at the start of the time 

series. Under these circumstances, the number of estimable parameters are reduced to three when 

assuming a linear effort model ( r , K  and x ), or four when using the logistic model ( r , K , x and 

a ). The negative of the log-likelihood function to be minimised is: 

 
2 2

1

ln (ln ln ) / 2 ln( 2 )
n

y y y

y

L C C C  (2.43) 

where n is the number of years in the catch time series, yC and yC are the observed expected catch 

for year y , and is the coefficient of variation. Vasconcellos and Cochrane (2005) used a Markov 

Chain Monte Carlo (MCMC) method to obtain posterior probability distributions of model 

parameters. 

 

 

Assumptions: 

The main assumption is that the fishery is unregulated so that increases in fishing effort were not 

constrained given the absence of management restrictions. Furthermore, the effort dynamics are 

assumed to follow the model. The catch time series is assumed to be complete with data from the start 



 

 87 

of the fishery when the stock was at virgin biomass. Furthermore, catchability is assumed to remain 

constant over time, i.e. no increase in q associated with advancements in technology. 

 

Input:  

yC over the period when the fishery was largely unregulated. In addition, information about the 

dynamics of the stock/species, or similar stocks/species, is required to construct priors for parameters. 

 

Advantages: 

This method, based only on catch data and prior information about the dynamics of similar 

species/stocks, provides posterior probability distributions of population model parameters and 

fisheries management quantities such as / MSYF F and / MSYB B .  

 

Disadvantages: 

The main assumption is that the time series of catches contain information on both fishing effort and 

stock biomass. This assumption will only hold for a complete catch time series that includes data from 

the start of exploitation, and throughout the developing, maturity and senescent phases of the fishery. 

This method only applies if this development of the fishery evolved in the absence of effective 

management. A reliable record of total removals is essential.  

 

Applications and reviews: 

 Vasconcellos and Cochrane (2005) applied this method to historical catch time series for two 

data-rich stocks, Atlantic yellowfin tuna and Namibian hake, for the periods when these 

fisheries were unregulated. They compared posterior distributions with the “true” parameter 

values (obtained from full stock assessments) for both the linear and logistic effort models. In 

the case of yellowfin tuna, the logistic effort model gave a worse fit to the catch data, but 

resulted in better parameter estimates.  In contrast, the simpler linear model gave better 

parameter estimates than the logistic model for Namibian hake. In both cases, their model had 

a tendency to over-estimate both r and K . Based on their study, Vasconcellos and Cochrane 

warn that catch data can provide meaningful results only when combined with prior 

information about the dynamics of similar species/stocks. 

 Rosenberg et al. (2014) used a Bayesian algorithm, Sampling Importance Resampling (SIR), 

to obtain posterior parameter distributions for the catch-only model (COM-SIR). They 

simulation tested performance by categorising stocks in terms of four resilience groups: very 

low, low, medium and high resilience and assigning prior distributions to r and K .  Their 

analysis confirms that provisional estimates of stock status can be obtained from catch data in 

combination with supporting information on the dynamics of the fishery and productivity of 



 

 88 

the stock: more informative priors for r and K would result in better estimates. Harvest 

dynamics was the main variable that effected performance, emphasising the importance of 

establishing an accurate catch time series that incorporates discards. 

 

2.4.4 State-Space Catch-only Model (SSCOM)  

 

Developed by Thorson et al. (2013), SSCOM combines population biomass and effort dynamics 

models in a coupled system similar to the COM-SIR model of Vasconcellos and Cochrane (2005) 

described above. Stochasticity is incorporated by adding random process error to the biomass and 

effort dynamics. In addition, process error is added to the model-predicted catches to allow for time-

varying catchability. A state-space estimation procedure is employed to integrate over these random 

effects thereby reducing the number of estimable parameters. A Bayesian approach is adopted where 

posterior probability distributions for model parameters are generated using Markov Chain Monte 

Carlo (MCMC). The model assumes that a complete time series of catches are available from the start 

of the fishery when the stock biomass was at the pre-exploitation equilibrium biomass and that fishing 

mortality followed predictable dynamics over time. 

 

Model: 

The population dynamics is assumed to be described by a Schaefer
8
 surplus production model: 

 

 
1 1 exp( )

y

y y y y y

B
B B rB C

K
 (2.44) 

where r is the intrinsic growth rate, K is the pre-exploitation biomass (or carrying capacity), yB and  

yC are the predicted biomass and observed catch, respectively ,for year y , and 
2(0, )y N reflect 

the fluctuations about the model-predicted biomass. The biomass is assumed to be at the deterministic 

equilibrium at the start of the assessment period so that 0B K . 

 

Let BEB  denote the equilibrium biomass below which an increase in fishing effort will result in a loss 

of profit (the bionomic equilibrium): 

 / 2BEB aK  (2.45) 

                                                      
8
 Other forms of the production function, such as a Fox or Pella-Tomlinson, may be substituted if a skew 

production function is desired. 
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where / 2K corresponds to the biomass at which the sustainable yield is maximised according to 

equation (2.44), i.e. MSYL, and a is the fraction of MSYL at which the bionomic equilibrium occurs 

for the fishery. 

 

The effort dynamics (the change in fishing mortality as a function of biomass) is assumed to be 

described by the two-parameter function
9
: 

 
1 exp( )

/ 2

x

y

y y y

B
E E

aK
 (2.46) 

 

where yE  is the estimated fishing effort for year y , x denotes the rate at which effort enters and 

exits the fishery, and 
2(0, )y N  denotes the associated process error. 

 

The expected catch, yC , in any given year is assumed to be directly proportional to the population 

biomass and fishing effort (equations (2.44) and (2.46)): 

 

 exp( )y y y yC qE B  (2.47) 

where q is the constant of proportionality, or catchability coefficient, and 
2(0, )y N reflect the 

annual fluctuations in catchability. Note that q  is set equal to be 1 as it is confounded with the scale 

of yE . 

 

All process error terms ( y , y and y ) are assumed to be independently and normally distributed 

about the logarithms of the predicted population biomass, effort and catch for each year. For 

simplicity, it is further assumed that all error terms have the same variance such that . 

 

Prior distributions for the model parameters are updated by computing the associated likelihood: 

 

2

22

(ln ln )1
exp

22

y yC C
L  (2.48) 

 

 where L denotes the likelihood and yC and yC are the observed and predicted catch, respectively, for 

year y . 

                                                      
9
 Other models to describe the effort dynamics, such as those proposed in Section 2.4.3, can also be used. 
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Input: A complete catch time series, yC , in addition to prior information on r , K , a , x and 1E . 

 

Assumptions: The population biomass is assumed to be at carrying capacity at the start of the 

assessment period. Fishing effort is assumed to follow predictable dynamics. The catch time series is 

assumed to equal total removals, including bycatch. Catchability is assumed to vary randomly with 

time, i.e. without any systematic increase in q associated with advancements in technology. 

 

Advantages: Random fluctuations in catchability are incorporated in this model. Unlike DB-SRA, no 

prior distribution is required for final depletion.  

 

Disadvantages: This is the most complex of the models listed in this section and requires a high level 

of statistical expertise to understand and apply. A complete time series of catches, with adequate 

contrast, is required: developing fisheries with increasing catch time series cannot provide information 

about relative biomass or MSY. Incorrectly specified priors will result in poor estimates of population 

biomass. This biomass-effort model is not applicable to (non-target) bycatch species (fishing effort is 

a function of the bioeconomic equilibrium of the target species). 

 

Reviews: 

 Thorson et al. (2013) demonstrate how this method could be used for data-poor stock 

assessment by applying SSCOM to catch data for eight groundfish stocks from the West 

Coast of the US. They show how meta-analyses of assessed (data-rich) stocks can generate 

priors for the effort dynamics parameters, a and x . Results (in terms of coupled stock status 

and effort trajectories) are compared to DB-SRA estimates when a prior for current depletion 

is specified. Their results show that a prior on final depletion is required to improve 

performance when confronted with high levels of process error. SSCOM was able to 

construct strong posterior probability distributions from weak prior distributions for the 

biological parameters, r and K , and hence for MSY. However, the catch data were not able 

to update the prior distributions for the effort model parameters further, as these were already 

highly informed via meta-analysis. They list several reasons where SSCOM failed to 

reconstruct biomass trajectories accurately: e.g. not sufficient contrast in the catch data (e.g. 

an increasing time-series), or when the catch data violate the biomass and/or effort model 

assumptions (e.g. bycatch species). 

 Rosenberg et al. (2014) conducted a simulation study to compare the performances of 

different catch-only models, including SSCOM, in a consistent manner across a range of 

scenarios. They show that much simpler methods such as Catch-MSY (Section 2.4.2) perform 
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better than SSCOM when confronted with short catch time series. The study emphasises the 

need for accurate information on fishing effort and total removals. 

 

2.4.5 Depletion-Based Stock Reduction Analysis (DB-SRA) 

 

Developed by Dick and MacCall (2011), this method generates probability distributions for 

sustainable yield and biomass management reference points for data-poor fisheries. It is a 

combination of Depletion-Corrected Average Catch (DCAC) and stochastic Stock-Reduction 

Analysis (SRA, Kimura et al. 1984, Walters et al. 2006).  

 

The model: 

 

This model incorporates a Pella-Tomlinson production function which allows for the maximum of the 

sustainable yield curve to occur anywhere between zero and the pre-exploitation biomass, . 

Production is assumed to be lagged by a time equal to the age-at-maturity. A knife-edged function (by 

age) is assumed for maturity and recruitment to the fishery. 

 

The depletion-based SRA is based on a delay-difference model of the form: 

 
1 ( )

my y y t yB B P B C  (2.49) 

where 
yB is the biomass at the start of year, y , mt is the age-at-maturity, 

yC is the total catch 

(including discards), assumed to be taken by a single fishery during year y, and  is the latent annual 

production based on the mature biomass in year my t , adapted from the generalized production 

model proposed by Fletcher (1978): 
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where K is the pre-exploitation biomass (or carrying capacity), MSY is the maximum sustainable 

yield, 0n determines the shape of the production curve, and
/( 1)

1

n nn
g

n
 is a numerical quantity 

dependent on n . 

 

In term of the general Pella-Tomlinson-Fletcher production function, the maximum, MSYL, is located 

at: 

 

1

1nMSYL n  
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Special cases are: 

 

1

1

1

1: 0.37

2 : 0.5n

n MSYL e

n MSYL n

 

corresponding to the Fox and Schaefer forms of the production function respectively. 

 

To avoid the occurrence of unrealistically high productivity at low biomass levels, Dick and MacCall 

(2011) developed a hybrid model in which the generalised production model described by equation 

(2.50) is used when the biomass is above a join-point,
joinB . Below this point, a Schaefer surplus 

production model applies: 

 
( )

( ) ( )
m mm

join

y t join y t joiny t
join

P B
P B B B c B B

B
 (2.51) 

where  is the production-to-biomass ratio at the join-point, given by: 

 
2(1 ) n n

joinc n g MSY B K  (2.52) 

and is given by:   

0.5 for 0.3

/ 0.75 0.075 for 0.3 0.5

for 0.5

join

MSYL MSYL

B K MSYL MSYL

MSYL MSYL

 (2.53) 

 

Given an estimate for , the maximum sustainable yield can be estimated: 

 (1 exp( )) MSY
MSY

MSY

F
MSY Z MSYL K

Z
 (2.54) 

where  is the total mortality rate when fishing at MSY, and 

K is the pre-exploitation biomass that would lead to a current depletion of . 

 

 

Input: 

The data requirements of this method are a complete time series of annual catches from the beginning 

of the exploitation period, 
yC , and estimates/distributions for age-at-maturity, mt , the  ratio, 

the maximum sustainable yield level, , the natural mortality rate, , as well as the current 

depletion, specified in terms of .  

 

 

joinB

MSYF

MSY MSYZ M F

1

(1 )
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Advantages: 

Apart from a reliable catch time series, this method requires no additional data (such as an index of 

abundance) other than the specification of probability distributions of life-history parameters and 

current depletion. This method outputs posterior distributions for sustainable yield and MSY which 

can serve as the basis for on-going catch recommendations: the lower percentiles (rather than 

medians) could well be used to provide precautionary management advice for data-poor stocks.  

 

Disadvantages: 

This method is not suitable for short-lived species that are prone to large recruitment fluctuations. 

This method relies on a complete and reliable catch time series - this can be a major disadvantage: 

catches at the beginning of the fishery are often poorly documented. The definition of plausible prior 

distributions for model parameters can be tricky, especially for current depletion which is difficult to 

estimate reliably, even for data-rich stocks. The comparative complexity of this method renders it less 

intuitive than the simpler catch-only methods described in the preceding sections. 

 

Applications and reviews:  

 This method was evaluated a Review Panel in 2011 organised by the National Marine 

Fisheries Services (NMFS 2011). The Panel agreed that application of a hybrid productive 

function, described by equations (2.51) to (2.53), adequately deals with the undesirable high 

productivity at low biomass levels associated with the Pella-Tomlinson function. However, 

the Panel suggested that other functional forms need to be investigated, particularly for highly 

depleted stocks that would be sensitive to changes in the model dynamics at low biomass 

levels. The sustainable yield estimates obtained by this method were generally less than the 

“true” MSY. This method proved to be robust across a wide range of scenarios and biological 

parameter choices. However, the simulation study conducted by Wenzel and Punt (2011) 

showed that DB-SRA estimates are highly sensitive to the prior distribution assumed for final 

depletion (expressed in terms of ): a positively-biased estimate of depletion (such that 

the actual resource biomass is lower than that assumed in the model), may cause the estimates 

of MSY to exceed the “true” values. NMFS (2011) suggested that a Productivity and 

Susceptibility Assessment (PSA) be performed to assist in developing prior distributions for 

current depletion – this has recently been conducted by Cope et al. (In press). The Panel 

advised that further investigation is required regarding the bias correction necessary to render 

this method risk-neutral. 

 Dick and MacCall (2011) compared the DB-SRA outputs with estimates from data-rich 

assessments for groundfish stocks on the west coast of the United States. Given a reliable 

catch time series, they found that useful information can be gained despite little knowledge of 

current biomass: the progressive reduction in abundance allows for the separation of yield that 

1
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the stock can sustain indefinitely and the non-sustainable “windfall” portion. Unlike other 

catch-only assessment methods such as SS-COM, Dick and MacCall showed that DB-SRA 

worked well in situations where the stock biomass has declined almost monotonically.  

 Carruthers et al. (2014) evaluated the performance of DB-SRA by means of simulation 

testing. Compared to other catch-only methods tested, DB-SRA led to the best performance 

given a good estimate of depletion, which is unlikely to be available for data-poor stocks. 

Performance was affected by bias in the input for current depletion.    

 

2.4.6 Catch-curve stock-reduction analysis (CC-SRA) 

 

Developed by Thorson and Cope (2014), this approach is based on stock reduction analysis (SRA) 

and incorporates age-composition data from the most recent year(s) to allow for the estimation of a 

catch-curve and an associated fishing mortality rate(s). The advantage of this method over other 

stock-reduction approaches, such as DB-SRA, is that no prior assumptions regarding final depletion 

are required. 

 

Using age-structured population dynamics, the numbers-at-age,
,a yN , for age a and year y  are given 

by: 

 ,

1, 1 , 1

   if  0

exp( ( ))    if  0

y

a y

a y a y

R a
N

N Z a
 (2.55) 

where 
yR are the number of recruits for year y and 

,a y a yZ M S F denotes the total mortality rate, 

where M is the natural mortality rate, aS is the age-specific fishing selectivity (approximated by a 

logistic function with maximum of 1.0), and
yF is the fishing mortality rate at the age of maximum 

selectivity. 

 

The spawning biomass in year y  is given by: 
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,

0

a
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a
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where aw denotes the weight-at-age and am the maturity-at-age. 

 

The total number of fish caught of age a in year y is approximated by the Baranov equation: 

 , , ,
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Assuming a Beverton-Holt stock recruitment relationship with a lognormal error distribution, the 

number of recruits at the start of year y is given by: 

 

2
0 2

0

4
ln ln ,

(1 ) (5 1) 2

sp

y R
y Rsp sp

y

hR B
R N

B h B h
 (2.58) 

where h denotes the steepness of the stock-recruitment relationship (the degree of compensation) and 

R
is the standard deviation of the log-residuals, assumed known. 

 

The numbers-at-age at the beginning of the assessment period are assumed to lognormally distributed 

about the unfished numbers: 

  

 
2 2

,1 0(ln( exp( )) / 2, )a R RN N R aM  (2.59) 

 

Lastly, a multinomial distribution is assumed for the age-composition data: 

 
,( ,  )y a y compA Multinomial C n  (2.60) 

where 
compn denotes the number of age-composition samples. 

 

The model parameters,
yR , h , M , 

yF and the fishing selectivity parameters are estimated using 

maximum penalized likelihood.  

 

Input: A complete catch time series, 
yC , and age-composition data for the final year(s). In addition, 

prior information about the steepness parameter, h , and natural mortality, M . 

 

Assumptions: The abundance-at-age at the beginning of the assessment period is assumed to be 

approximately the same as in the unfished state. Population weight-at-age, aw , and maturity-at-age

am are assumed to be known without error. Fishing selectivity is assumed to be asymptotic and 

natural mortality is assumed to be constant over all ages and years. 

 

Advantages: This method offers a data-poor assessment technique that combines compositional and 

catch time series data.  It allows for time-varying fishing mortality. No assumption regarding final 

biomass is required.  CC-SRA allows for rapid data collection of compositional data, without 

requiring data collection from historical periods, allowing fishery managers to prioritize which stocks 

to assess, and then collect necessary data (unlike index-based methods, which generally require 

continuous data records from historical periods).   
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Disadvantages: CC-SRA requires the assumption that selectivity is asymptotic, and offers no obvious 

way to diagnose whether this assumption is correct. The model has not been tested on real-world 

assessment data, and its performance in these cases is unknown. Compositional data is often more 

ambiguous to interpret than index data, due to difficulties when standardizing or estimating its 

effective sample size.  This may mean that CC-SRA is more dependent upon modeller assumptions 

than index-based data-poor methods. 

 

Applications and reviews: 

 Thorson and Cope (2014) show that CC-SRA gives unbiased estimates of fishing mortality 

when recruitment variability is low or moderate. They recommend CC-SRA as a data-poor 

assessment method that incorporates age-composition data in recent years. 

 It is currently being explored using real-world data by Cope and Thorson (unpublished 

results).   
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2.4.7  Catch-based Harvest Control Rules (C-HCRs) 

 

Both methods that follow rely on estimates (distributions) of stock status to parameterise the control 

rule. Wetzel and Punt (2011) point out that choosing a distribution for (relative) depletion is a major 

drawback of these methods: if sufficient data were available to estimate the level of depletion, then 

the stock would not be considered data-poor. In the absence of regular updates of stock assessments to 

provide estimates of stock depletion, the catch-based HCRs that follow are effectively constant catch 

rules. With no feedback mechanism, this type of HCR requires thorough simulation testing to tune 

control parameters to ensure adequately risk-averse performance under high levels of uncertainty 

about stock status.  

 

2.4.7.1 Depletion Adjusted Catch Scalar (DACS)  HCR 

 

This simple approach provides an estimate of sustainable catch when only catch data are available. It 

is based on the average historical catch during a time period during which the stock is believed to 

have been stable, i.e. a period over which there is no evidence of a declining biomass trend.  The 

target catch for the next year is given by (Berkson et al. 2011): 

 

 
2

1

2 1/ ( 1)
y

y

y y

DACS s y y C  (2.61) 

 

where 1y and 2y are the years that span a period of stable historical catches during which the stock is 

considered to have been near a sustainable equilibrium, and s is the scalar multiplier that reflects the 

perceived level of stock depletion, e.g., / MSYs B B  . For data-poor stocks lacking a complete catch 

time series dating back to the start of the fishery, the target catch is based on a recent average catch. 

 

Input: 

The catch time series, yC , and information (expert judgement) about stock status.  

 

Assumptions: 

The main assumption is that the average historic catch is a true reflection of the sustainable yield of 

the stock. This assumption holds only if the period of stable catches coincided with stable fishing 
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effort and stock biomass. Furthermore, the method relies on the assumption that stock status can be 

inferred reliably from qualitative information and/or expert judgement. 

 

Advantages: This method is simple, intuitive, and easy to understand and implement. It is suitable for 

the provision of short-term (stop-gap) catch advice. 

 

Disadvantages: 

Catch data from all developmental stages of the fishery are required to be able to distinguish a period 

when the stock was stable and catches were sustainable. Judging stock-status is difficult, particularly 

when data are limited. The suggested scalar multipliers are somewhat arbitrary and conservative (to 

account for high levels of uncertainty) and could lead to substantial underutilisation of a stock.  There 

is no feed-back control feature embedded in this rule to self-correct if the choice of control parameters 

was wrong. This method does not present a long-term solution for stock management. 

 

Reviews and applications: 

 This method was proposed by Restrepo et al. (1998) to advise catch targets and limits for US 

fisheries given in the National Standard 1 of the MSA for those stocks that lacked sufficient 

data to enable quantitative assessments to be conducted. Three scalar multipliers were 

proposed in accordance to the perceived status of the stock: 0.25 if the stock is believed to be 

depleted below the minimum stock size threshold, 0.75 if the stock was believed to above 

MSY level, and 0.5 between the two thresholds. Based on simulation studies, the default 

acceptable biological catch (ABC) for data-poor stocks was set to 0.75 of the recent average 

catch by the North Pacific Fishery Management Council (PFMC) (see Appendix A.1).  

 Berkson et al. (2011) reviewed the Restrepo approach for stocks for which the reliable catch 

data only (ORCS) method is used. They noted that the method would not be suitable for 

lightly fished stocks as the control rule excludes the possibility of future catches exceeding 

those taken in the past. They suggest that fewer data and shorter catch time series would 

necessitate a reduction in the scalar multiplier to account for increased levels of uncertainty. 

Furthermore, a Bayesian approach is recommended that incorporates prior knowledge on 

stock status in a statistically defensible manner. The ORCS Working Group emphasise that 

this method is intended as a “sort-term fix” until additional data are collected.  

 New Zealand (NZHSS 2011) applies a similar method to estimate maximum constant yield 

(MCY
10

) for data-poor stocks, but here the scalar multiplier is based on natural mortality:  

1s  when the natural mortality rate of the stock is believed to be very low ( 0.05M ), 

                                                      
10

 Maximum Constant Yield (MCY) “is the maximum sustainable yield that can be produced over a long term 

by taking the same catch year after year, with little risk of stock collapse” (NZHSS 2011). In New Zealand, 

MCY is used as a proxy for static MSY when accounting for the dynamic effects of the stock. 
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decreasing to 0.6s  as M  increases to 0.35 or above. The scalar multiplier is a measure of 

the natural variability of the stock biomass: the greater the variability of stock biomass, the 

lower the value of s needs to be.  

 Carruthers et al. (2014) evaluated the performances of DACS and compared its performance 

with other data-poor methods within a Management Strategy Evaluation (MSE) framework. 

With no feedback control mechanism, this average catch method performed the worst of all 

the methods which they simulation tested. According to their simulation results, this type of 

HCR led to a high probability stock over-exploitation and was shown to be unsuitable for 

stock-rebuilding purposes.  

 

 

 

2.4.7.2 Shepherd’s Hang Over TAC (SHOT) HCR 

 

Termed Shepherd’s Hang Over TAC (SHOT), Shepherd (1984) developed this simple method to 

generate catch advice when only annual catches are available. Assuming that fishing mortality 

remains constant over the projection period, the status quo catch can be approximated by the weighted 

average of the previous year’s catch and the production due to new recruits: 

 (1 )SQ y yC F C FP  (2.62) 

where 
SQC  is the status quo catch,

yC is the total catch taken in year y , 
yP is the stock production 

from new recruits in year y , and F denotes the catch/biomass ratio. 

 

If only a catch time series is available, and assuming constant recruitment, the status quo catch, 
SQC , 

can be expressed as a weighted average of the previous year’s catch and the historic average 

(Shepherd 1984): 

 (1 )SQ yC F C F C  (2.63) 

 

where C is the average historic catch taken over n years. When assuming near constant fishing 

mortality, F can be estimated by regression of 
1yC on 

yC . Applied over a sufficiently long time-

period, the status quo catch will eventually converge to the average catch. 

 

Input: A catch time series, yC . 
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Assumptions: Recruitment is assumed to be near constant and the future fishing mortality is assumed 

to remain unchanged (i.e. status quo is maintained).  

 

Advantages: SHOT is a simple method for estimating a status quo catch when only catch data are 

available. 

 

Disadvantages: The catch-only application of the SHOT method is not applicable to declining stocks 

or stocks with high recruitment fluctuations.  

 

Applications and Reviews:  

 The ICES Working Group on Methods of Fish Assessments ICES (1984) compared the 

performance of the SHOT with the more complex DROP and DOPE methods, developed by 

Deriso (1980), Roff (1983) and Pope (1984), on three simulated stocks:  

 Stock 1 with high recruitment and low fishing effort variations, 

 Stock 2 with moderate recruitment and low fishing effort variations, and 

 Stock 3 with low recruitment and high fishing effort variations. 

 

SHOP, DROP and DOPE were also tested on data from two real stocks: Georges Bank 

scallop and Baltic herring. Based on these simulation studies, the simple SHOT method 

performed best when recruitment variability was low, while the more complex DROP and 

DOPE methods are preferred when confronted with high levels of recruitment variability. 

However, when fluctuations in effort dominated the population dynamics, the SHOT method 

performed best. The Working Group (ICES 1984) concluded that this shortcut method may be 

useful to estimate status quo catches when more complex methods cannot be applied due to 

sparse data; while they may be useful for short-term forecasting, they cannot be used to 

evaluate the long-term management consequences. 

 

2.4.7.3 Depletion-Corrected Average Catch (DCAC) HCR 

 

Developed by MacCall (2009) for application to data-poor stocks, this method is derived from the 

potential yield formula and provides a moderately high yield estimate that is likely to be sustainable 

(though is typically less than MSY).  This method is applicable to long-lived species with natural 

mortality rates less than 0.2yr
-1

. 

 

Unlike the average catch method which requires catch data from a period when the stock was stable, 

this method incorporates the catch time series (which need not go back as far as the start of the 
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fishery) and accounts for the change in stock biomass over this time period.  The method involves 

dividing the catch series into a sustainable yield component and an unsustainable “windfall” 

component corresponding to the initial reduction in stock biomass, expressed as a “windfall ratio”. 

The DCAC is calculated as the cumulative catches divided by the number of years in the time series 

and this “windfall ration”. The resultant estimate for sustainable yield should be less than MSY.  

 

 

Specifically, the depletion-corrected average catch is given by: 

 
/

y

pot

C
DCAC

n W Y
 (2.64) 

 

where  is the change in biomass from the first year ( ) to the most recent year ( ) in the 

catch time series denoted by , and  is the potential sustainable yield. The 

“windfall ratio”,  is then given by: 

 0

0

B

MSYL c M B
 (2.65) 

where   is the pre-exploitation (unfished) biomass,  is the biomass level (relative to ) 

corresponding to MSY, and  is a tuning parameter that links the natural mortality, , and 

the fishing mortality rate associated with MSY. 

After elimination of the unknown quantity, 0B , and substitution into equation (2.64), the estimate of 

sustainable yield is given by: 

 
/ ( )

yC
DCAC

n MSYL c M
 (2.66) 

  

 

While an estimate of the DCAC can readily be obtained given point estimates for each of the 

parameters, a Monte-Carlo approach is required to account for uncertainty: posterior probability 

distributions are generated by randomly sampling parameter values from pre-specified prior 

distributions. For this extension of the method, prior distributions must be specified for ,  ,  

and . 

 

For the case where stock status has remained unchanged,  is zero and the sustainable yield is equal to 

the historic average catch. However, if there has been a decrease in biomass,  will be positive and 

the estimate for sustainable yield will be less than the historic average catch.  
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Input: 

Input data include a time series of total annual removals (landings plus discards) over an extended 

period (typically in excess of ten years) and estimates for the life-history parameters such as natural 

mortality rate, M, maximum sustainable yield level, MSYL, relative stock status, , and an estimate of 

MSYF (for the data-poor situation, the latter can be estimated by performing a per-recruit analysis). 

 

Advantages:  

The method is applicable in circumstances when a comprehensive time series of catch data are 

lacking. The DCAC is relatively robust to the misspecification of M and /MSYF M .Uncertainty 

regarding model parameters can be incorporated explicitly by the definition prior distributions.  

 

Disadvantages: 

This method is not recommended for highly productive stocks with natural mortality rates exceeding 

about 0.2yr
-1:

 the windfall ratio becomes negligible and the DCAC approaches the average catch with 

increasing M. MacCall (2009) warns that DCAC gives an estimate of yield that is likely to be 

sustainable only if the stock is maintained near levels of abundance experienced during the time 

period for which catch data are available. However, there are conditions under which the estimated 

yield may not be sustainable: for stocks that have experienced a large reduction in biomass in recent 

years, the estimated yield, while being sustainable over the historic period, will not be sustainable at 

low biomass levels. Therefore, DCAC is not suitable for generating catch advice for heavily depleted 

stocks that require rebuilding to previously productive levels.   

 

Applications and reviews:  

 

 Following a formal review of a variety of data-poor methods initiated by the National Marine 

Fisheries Services (NMFS 2011) in the US, the review panel found the performance of DCAC 

to be robust across a wide range of scenarios. Simulation testing showed that estimates were 

generally negatively biased in comparison to the true OFL (generally equivalent to the current 

yield when fishing at ). However, the DCAC estimates were found to be sensitive to the 

assumptions regarding . In particular, if the estimate for  is below the true value, the 

DCAC is positively biased (larger than the true OFL). As such, the parameters estimates 

(distribution) that are used to compute the “windfall ratio” need careful consideration. 

Furthermore, if the stock biomass has declined after the period for which data are available, 

the estimate DCAC may no longer be sustainable. While it is not necessary to update the 

DCAC as it provides a one-time estimate of sustainable catch, effort should be directed to 
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updating and improving the catch time series and reviewing the prior distributions to 

accurately reflect the uncertainty about the input parameters.    

 Wetzel and Punt (2011) conducted simulation studies to evaluate the performance of DCAC 

compared to DB-SRA and a data-poor application of Stock Synthesis (SS) (Cope 2013) based 

on catch data for US west coast flatfish and rockfish. In their study, DCAC resulted in harvest 

estimates that were lower than the true OFLs for flatfish and rockfish, even when life-history 

parameters were misspecified. However, while DCAC is fairly robust to misspecification of 

distributions for  and , it was found to be highly sensitive to the assumed distribution for 

. However, they suggest that prior information might be incorporated from assessed stocks 

with similar life-history traits to allow for inferences to be made about depletion. Their 

analysis also highlights the importance of performing multiple runs to examine the impact of 

different assumptions regarding prior distributions to determine the potential range of harvest 

levels under a variety of conditions.  

 This method is applied to ICES Category 4 stocks (stocks with reliable catch time series) to 

determine suitable exploitation rates. Catch advice is derived by applying a 20% uncertainty 

cap to the DCAC (ICES 2012).  

 Carruthers et al. (2014) evaluated this method for setting catch limits in data-poor fisheries 

and found that it performed well for long-lived species. However, because the DCAC is a 

proxy for MSY, this method is not suitable for stock rebuilding purposes (MacCall 2009) - 

the method therefore performed poorly when the initial stock size was low. 
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Catch-based methods 

Assumptions The simplest catch-based methods assume that the trend in catch is proportional 

to the trend in biomass, with no effort restrictions or increase in fishing 

efficiency.  

The catch time series is generally assumed to be complete and representative of 

all the development stages of the fishery. 

The majority of the catch-based assessment methods rely on the assumption that 

current depletion is known. 

Advantages Catch time-series data are widely available for most fisheries. 

Assessment methods such as Catch-MSY, COM and SSCOM present flexible 

frameworks into which additional data, such as an index of relative abundance, 

can be incorporated, thereby facilitating the transition from data-poor to data-

sufficient and to data-rich. 

The associated harvest control rules are simple and easy to understand, but, in 

the absence of supporting assessments, they are effectively constant-catch 

strategies. 

Disadvantages 

 

The catch time-series is basically not of itself informative about stock 

productivity and size. 

For data-poor fisheries, the total removals are not well known. 

Total catches are affected by changes in effort regulations, market demands and 

catchability, not only by abundance. 

These models are generally suitable only for long-lived low-productivity data-

poor stocks for which biomass levels are driven by the production function 

rather than by recruitment variability. 

Harvest control rules incorporate no feedback about trends in biomass, and 

these rules need to be very conservative to satisfy biological risk criteria. 

Catch-only methods are suitable for short-term (interim) TAC advice only; 

longer periods require additional data (e.g. a reliable biomass index) becoming 

available. 

Comprehensive Management Strategy Evaluation (MSE) – a time-intensive 

overhead – should be implemented to demonstrate robustness of these simple 

catch-based assessment methods and control rules prior to their application. 

 

 

Table 4: Summary of general assumptions and advantages/disadvantages associated with catch-based methods. 
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2.5 Index-type methods 

 

More typically associated with data-moderate and data-rich stocks, index-based methods for 

generating catch advice require a reliable index of abundance to track trends in stock biomass, for 

example Namibian hake (Butterworth and Geromont 2001) and ICES Category 3 stocks (ICES 

2012b). However, these methods can sometimes be applied to stocks that are considered data-poor, 

for example when confronted with a short survey or CPUE time series, or an indirect index of 

abundance as provided by the mean length data (see length-based methods).  

2.5.1 An Index Method (AIM) 

 

Developed by Rago (2008), this method fits a relationship between the index of abundance and the 

catch time series to estimate the catchability coefficient, q . It is based on a linear model of 

population growth to characterize the population response to varying levels of fishing mortality. 

Given an estimate for the catchability coefficient, the relative fishing mortality rate at which the 

population is likely to be stable can be approximated.  

 

Model:  

The current and lagged relative fishing mortality is given by: 
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respectively, where 
yC is the catch and 

yI is the index of abundance for year y . 

Assuming that the index of abundance is directly proportional to the stock biomass, so that 
y yI qB

where q is the catchability coefficient, then the replacement ratio can be approximated by: 
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When the replacement ratio is greater than one, the population is growing and vice versa. 

 

The software is available from the NOAA Fisheries Toolbox [nft.nefsc.noaa.gov/AIM.html] 
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Input: Time series for the catch, 
yC , and index of abundance, 

yI . 

 

Assumptions: The main assumptions are that the time series is a reliable index of stock biomass and 

represent current and future conditions and that the linear model describes the population dynamics.  

 

Advantages: Given reliable time series with sufficient contrast and information content, this method 

can track biomass trends and is useful to construct reference points based on relative abundance 

indices and catches. 

 

Disadvantages: This method does not give reliable estimates of stock status when confronted with 

poor data (short, or noisy, time series).  

 

Applications and reviews: 

 Miller et al. (2009) reviewed assessments of five data-poor stocks or stock complexes: the 

skate complex, deepsea red crab, Atlantic wolfish, scup and black seabass. These stocks either 

lack data or the data did not contain sufficient contrast or information. While AIM was able to 

tracks biomass trends, it could not reliably estimate stock status.  

 

 

2.5.2 Surplus production models 

 

These biomass dynamics models are the simplest and most widely used assessment models. The 

production function can take many forms of which the Schaefer (1954) model is the best known and 

most commonly applied. Given sufficient contrast in the catch and abundance index data, these 

assessment models can reliably estimate stock status and related management quantities such as MSY.  

Method: 

Under the assumption of deterministic dynamics, the resource biomass is modeled by: 

 1 ( )y y y yB B f B C  (2.67) 

where yB  is the biomass for year y , 
yC is the total catch for year y and ( )yf B  is the net growth 

function. A flexible form of the production function, developed by Pella and Tomlinson (1969), is 

assumed: 
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y

y y

B
f B rB

K
 (2.68) 

where r  is the intrinsic growth rate, K  is the pre-exploitation equilibrium biomass (or carrying 

capacity), and determines the shape of the production function: the Schaefer form of the growth 

function is obtained by setting 1  in equation (2.68), while the Fox form is obtained as 0 . 

Note that for the data-poor scenario, the shape parameter is unlikely to be estimable – rather, it is 

fixed, generally to some value between zero and one, depending on the value assumed for MSYL. 

 

The catch is defined by: 

 
y y yC qB E  (2.69) 

where q is the catchability coefficient (effectively the multiplicative bias if the index reflects 

abundance in absolute terms), and E is the fishing effort for year y . 

 

Assuming that the CPUE provides an index of abundance which is proportional to resource biomass, 

then:   

 

 /y y y yI C E qB  (2.70) 

 

allows for the estimation of model the parameters r and K by fitting the model-predicted biomass to 

the index of abundance. Assuming a log-normal error distribution for that relationship, the negative of 

the log-likelihood (-ln L) is: 

 

 
2 2ˆˆln ln (ln ln( )) / 2y y

y

L I qB  (2.71) 

 

where the biomass is given by equation (2.67). 

 

A Bayesian approach is recommended in situations where data are sparse, or the quality of the data is 

poor. For such cases, the specification of prior distributions for the model parameters r , K (or final 

depletion), q  and  is recommended. 

 

Input: A catch time series, 
yC , and a relative index of abundance, 

yI , and, depending on the quality 

of the data, prior distributions for r , K (or final depletion), q  and . 
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Assumptions: The main assumption is that the index of abundance is proportional to stock biomass 

and that the catchability coefficient is time-invariant. The initial biomass is generally assumed to be 

equal to the pre-exploitation biomass so that 0K B (Punt 1990). 

 

Advantages: The Schaefer model is one of the simplest and most commonly used age-aggregated 

assessment models and has a proven track record. Given time series with sufficient contrast and 

information content, this method is able to reliably estimate stock-status and related management 

quantities, such as MSY (Ludwig and Walters 1985, Hilborn and Walters 1992).  

 

Disadvantages: The reliability of the parameter estimates is dependent on the information content of 

the data. If there is limited contrast in the time series, then the model cannot distinguish between high 

r - low K, and low r - high K scenarios. The index (for example CPUE) may not be proportional to the 

biomass due, for example, to an undetected increase in the catchability coefficient. 

 

Reviews and applications:  

 These models have been widely used for the provision of management advice for data-rich 

stocks, for example Atlantic tuna stocks under ICCAT management. 

 Ludwig and Walters (1985) showed that, given adequate data, biomass dynamics models 

outperform more complex models and generally gave good estimates of management 

parameters.  

 Hilborn and Walters (1992) reviewed biomass dynamics models and warned that adequate 

contrast is required in the data to estimate stock status reliably.  

 

 

2.5.3 Replacement Yield (RY) method 

 

Developed by Brandão and Butterworth (2008), this model is a simplified form of the surplus 

production model described above and provides a one-time estimate of replacement yield which can 

be used as a basis for catch advice.    

 

The dynamics of the stock is modelled by: 

 1y y yB B RY C  (2.72) 

 where yB  is the biomass for year y , 
yC is the total catch for year y and RY  is the replacement 

yield (assumed to be constant over the period under consideration).  
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An estimate of RY is obtained by fitting the model to a survey or CPUE index of abundance. The 

likelihood is calculated assuming that the observed index values are log-normally distributed about 

their expected values. Contributions to the negative of the log-likelihood are given by equation (2.71) 

above. 

 

Input: A catch time series, 
yC , and an index of abundance, 

yI . For a Bayesian analysis, prior 

distributions for 1B and RY must be specified. 

 

Assumptions: The index of abundance is assumed to be directly proportional to the biomass.  

 

Advantages: This model generates a distribution for replacement yield that serves as a basis for catch 

advice. This simplified version of the surplus production model requires fewer assumptions to be 

made about r , K and . 

 

Disadvantages: Unlike the surplus production models, this simplification does not provide estimates 

for management quantities such as r, K and MSY.  

 

Reviews and applications:  

Brandão and Butterworth (2013) applied this RY model to total annual catches and survey abundance 

estimates for the South African kingklip resource.  Posterior distributions for replacement yield for 

both South and West coast stocks were generated. The medians of these distributions provided upper 

bounds for the catch limit recommendations. It was recommended that the catch limits be set at the 

25
th
 percentile of the posterior RY distribution to achieve the desired population growth. 
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2.5.4 Index-type Harvest Control Rules (I-HCRs) 

 

For this type of rule, it is assumed that there is at least some index of abundance ( I ) available, be it a 

CPUE series which is reasonably comparable over time, or a survey series. It is further assumed that 

these data have reasonable information content and that the observation error is not too large. Based 

on these premises it can be assumed that any trend in the index of abundance is a fairly reliable 

indicator of trend in resource abundance. The idea underlying these empirical HCRs is that the catch 

advice each year is adjusted up or down from the previous year’s catch depending on either the rate of 

increase or decrease in size of the resource as indicated by the index of abundance (e.g. CPUE), or the 

extent to which this index is above or below target level. The success of these rules depend on how 

much information relative to noise due to observation error, the data series contains, i.e. whether the 

HCRs are reacting to real trends in abundance or simply following noise. A few examples of index-

based HCRs that have been simulation tested and/or applied are given below. 

 

2.5.4.1 Index-adjusted status-quo HCR 

 

ICES (2012b) propose this rule for Category 3 stocks when a reliable abundance index is available. 

Catch advice is based on a control rule that compares the most recent average of index values with the 

average of the preceding years. The catch for the next year is computed by adjusting the current catch 

with this ratio: 

 

1

1 1 1
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z x I

 (2.73) 

where iI is the index of abundance value for year i , x and z x are the number of years over which 

the recent and preceding survey values are respectively averaged, and 1yC is an average recent catch. 

The number of years over which the average is computed should take account of the expected 

interannual variability in the index. ICES (2012b) suggest values of 2 and 5 for x and z respectively; 

the average catch is computed over the most recent three years although a longer period may be 

required for long-lived species. 

 

In addition, a 20% change limit (the catch advice is constrained to change by no more than 20%) and, 

if appropriate, a precautionary buffer (a multiplier of 0.8 on top of the change limit) is applied to the 

catch advice. The precautionary buffer is not applied when expert judgement determines that the stock 

is not reproductively impaired, and where there is evidence that the stock size is increasing or that the 
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level of exploitation has been substantially reduced (e.g. reduction in fishing effort in the main fishery 

where the stock is taken as a bycatch; ICES 2012b). 

 

Input: A direct index of abundance,
yI , such as provided by CPUE or survey. 

 

Advantages: This HCR generates stable catch advice and is suitable for stocks that are fully exploited.  

 

Disadvantages: The HCR is not suitable for application to depleted stocks as the rule is not able to 

rebuild biomass levels satisfactorily. 

 

Reviews and applications:  

 ICES (2013) simulation tested this HCR (including variants that incorporated the variance of 

the surveys and smoothing) within a MSE framework and found that this HCR (and its 

variants) led to increased biological risk over time, and although it stabilises spawning stock 

biomass in the short-term (~5 years), it would not be considered precautionary in the medium- 

to long-term. They concluded that the main reason for this behaviour was the lack of a target 

in the rule. 

  

 

2.5.4.2 Slope-type HCR  

 

This HCR is similar to the one implemented for the data-rich Namibian hake fishery (Butterworth and 

Geromont 2001). The catch advice for the next year is given by:  

 1 (1 )y y yC C s  (2.74) 

 

where yC  is the observed catch for year y, is a control parameter that reflects how strongly the 

catch advice is adjusted in response to the perceived trend in resource biomass, and ys is a measure of 

the trend in the survey abundance index given by the slope of the linear regression of 'ln yI  against 

'y  for years ' 1, 2,...,y y p y p y  for abundance index I , and p is the number of years over 

which the slope is calculated. Note that if p is too small the trend estimates would fluctuate too much 

(tracking noise), but if p  is too large, the HCR would not be able to react sufficiently rapidly to 

recent trends in resource abundance.  

 



 

 112 

For the first year of the projection period an appropriate “starting level”,
*C , must be chosen (not 

necessarily equal to the actual catch that year).  The choice of this starting level is important for the 

performance of the HCR because one that is too low will result in an unrealistically large drop in TAC 

advice in the first year of management, while one that is too high may necessitate subsequent severe 

cuts in the catch.   

 

Input: A direct index of abundance,
yI , such as provided by CPUE or survey. 

 

Advantages: This is a very simple and intuitive rule that moves the catch up or down in relation to the 

trend in the recent survey data. This rule can be tuned to give the desired level of stability in catch 

advice: fluctuations in catch advice are dampened by reducing and choosing a longer period over 

which the slope is calculated.  

 

Disadvantages: In the absence of a target (see target-type HCR discussed below), this rule cannot 

rebuild stock biomass adequately from low depletion levels. Given a data-poor scenario, associated 

with lack of information about stock status and noisy data, it would be difficult tune this rule react 

quickly to a decreasing trend in index of abundance while at the same time ignoring situations where 

such a trend reflects only noise. 

 

Reviews and applications:  

 Butterworth and Geromont (2001) developed this HCR for the management of the data-rich 

hake stock in Namibia. A slope type-rule was chosen to distinguish between two possible 

stock status scenarios: a depleted stock requiring future TAC advice to adjust catches 

downward, or a healthy stock which could support higher future catches. The feedback 

provided in terms of the slope of the most recent abundance estimates would determine if 

catches were to be adjusted up or down. This MP was implemented successfully for three 

years, also providing a basis to distinguish the two scenarios. 

 Catch advice for Tier 4 (data-poor) stocks in Australia was initially based on a slope-type rule 

(Wayte 2009). However, this rule has since been replaced with a target-type HCR. 

 Geromont and Butterworth (2014a) evaluated this rule for “severely depleted” data-poor 

stocks, typically associated with high levels of uncertainty, and found the performance 

satisfactory given appropriate risk-averse tuning with a low starting level, 
*C . 
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2.5.4.3 Target-type HCR 

 

This type of HCR is based on moving resource abundance to a chosen target level in terms of some 

abundance index
yI . The annual catch is adjusted up or down depending on whether the most recent 

abundance index is above or below the target level. 
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 (2.75) 

where  0 1w  is a smoothing parameter, 
targetI is the desired target value for the index of 

abundance (chosen at some percentage above an historical average when the fishery was stable),

targetC is a target catch associated with the target index (chosen as an average over a predefined 

historical period of stable catches),
recent

yI  is the average survey or CPUE index of abundance over the 

most recent (e.g. two to three) years, and
0 targetI I  is the limit index below which future TACs are 

reduced quadratically rather than linearly with I .  

 

A simplified form of equation (2.75), with w=0, is used to compute the recommended biological catch 

for Tier 4 stocks in Australia (Wayte 2009, Little et al. 2011): 

 

0
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1 max arg 0
min , max 0,

recent

yt et

y t et

I I
C C C

I I
 (2.76) 

where maxC is the maximum level of catch allowed. Here, the TAC is set to zero if the abundance 

index falls below the lower limit
0I .  

 

The formulation given by equation (2.75) allows for a non-zero TAC of 
argt etwC  when

0recentI I , 

which has the effect of dampening the inter-annual variation in catches, thereby stabilizing the output 

from the HCR. Setting 0w would necessitate a steeper slope of the linear relationship given by 

equation (2.76), leading to more variability in future catches. On the other hand, setting 1w would 

result in no inter-annual fluctuations in catch, but also no adjustment of catch in response to changes 

in survey abundance indices.  
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Figure 11: Different target-type rules for alternative values of the control parameter w: the dashed lines 

correspond to intermediate smoothing ( 0.5w ), while the solid black lines reflect the rule without smoothing. 

The vertical lines indicate the zero and target survey values, while the horizontal dotted line corresponds to a 

simple constant catch rule when w=1. 

 

 

 

Input: A direct index of abundance,
yI , such as provided by CPUE or survey. 

 

Advantages: Management reference points (targets and limits) are incorporated in the rule explicitly. 

The rule is intuitive: the catch is adjusted up or down to move the resource biomass towards a target 

while avoiding the limit. 

 

Disadvantages: Choosing the target reference points for the control rule can be tricky when 

confronted with a short time-series that does not correspond to a period of stable biomass and fishing 

mortality: the average historical index of abundance and catch are then probably far below the desired 

target value. In this case, alternative targets are best explored through simulation testing.  

 

Reviews and applications:  

 Wayte (2009) performed simulation studies to evaluate the performance of the target rule 

(with 0w ) for Tier 4 Southern and Eastern Scalefish and Shark Fishery (SESSF) stocks in 

Australia using management strategy evaluation (MSE). The biological component of the 

operating model was conditioned on flathead or school whiting. Different depletion levels at 

the start of the projection periods were considered (low, target and high: 35%, 48%, 60% of
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K respectively). Their simulation studies show that the success of this rule depends on well-

chosen target values for the abundance index and the future catch. In the absence of an 

assessment to provide an estimate of K , the target should be based on a period of time during 

which the fishery was economically and biologically stable.    

 Little et al. (2011) report that the target-type rule, adopted for setting the recommended 

biological catch (RBC) for the Southern and Eastern Scalefish and Shark Fishery of Australia, 

is able to guide a stock to the desired state from different initial levels of depletion. They 

warn that the selection of appropriate control parameter values for the rule is critical to its 

performance; better performance is achieved if the catch target is defined in terms of the 

average catch over a preselected historical reference period, rather than a recent average. 

They conclude that the target-based rule is a valuable tool when data are scarce.  

 Geromont and Butterworth (2014a) evaluated the target rule for application to a generic group 

of severely depleted (spawning biomass between 10% and 30% of K ) data-poor stocks of 

medium productivity ( 0.2 0.4M ), for which the South African horse mackerel is an 

example. Different values for the index and catch targets were simulation tested: the target 

index ranged from multiples of 1.5 to 2.5 of the historical average, while the catch target was 

chosen as the average historical catch, or 70% thereof. A smoothing parameter of 0.5w  

was applied to avoid large inter-annual fluctuations in TAC. Based on simulation trials, this 

target rule performed slightly better than the slope-type rule discussed above, giving more 

catch in median terms over the projection period for the same level of risk (a 90% probability 

that the biomass would be above 0.2K , the limit reference point).  

 Geromont and Butterworth (2014b) simulation tested target- and slope-type rules and 

compared their performance to assessment-based management in a retrospective study of four 

North Atlantic data-rich stocks: North Sea sole and plaice, and New England with flounder 

and plaice. Choices for the index and catch targets were based on simulation testing and 

tuning of the control rule to achieve the target biomass at the end of the projection period. 

Based on this retrospective study, the slope and target rules achieved comparable average 

catch over the projection period to what was achieved in reality (based on VPA assessments) 

without an increase in resource risk, but with far less interannual variability in catch advice.  

 

 

2.5.4.4 Index distribution HCR 

 

This HCR, developed by Jardim et al. (2015a), is based on the position of the latest data point in the 

biomass time-series distribution about the mean value. This HCR adjusts the status quo catch up or 
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down if the most recent survey value falls outside some confidence interval about the mean. The catch 

advice for the next year is given by: 

 
1 1y yC C  (2.77) 

where 
1yC is the total catch in the previous year, is catch multiplier given by: 
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where l and u are pre-specified catch multipliers,
1yI is the index of abundance value (survey 

estimate) for previous year, I denotes the mean in the abundance index, I is the corresponding 

standard deviation, In is the length of the index time-series, and lowz and 
uppz define the confidence 

interval limits (which may be non-symmetrical).  

 

The precision with which the mean and standard deviation is estimated will likely increase with the 

length of the index (larger In ), leading to narrower confidence intervals and more reliable 

adjustments to catch advice as more data becomes available. 

   

Input: A direct index of abundance,
yI , such as provided by CPUE or survey. 

 

Advantages: The length of the time-series and distribution of data points about the survey mean are 

explicitly incorporated into this HCR, thereby avoiding unnecessary annual changes in TAC in 

response to noise in the data.  

 

Disadvantages: This rule needs to be tuned within a MSE framework to determine appropriate values 

for the control parameters 
uppz , lowz , l and u to be able to achieve adequate risk-averse 

performance. While comprehensive tuning of HCRs is standard practice for data-rich stocks, this may 

not be a viable option for data-poor stocks especially when they are low-value and low-expertise. 

 

Reviews and applications:  

Jardim et al. (2015a in press) compared the performance of this HCR with the index-adjusted “status 

quo” and length–based “reference point” HCRs (described earlier) and found it to be the best 
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performer overall. To ensure adequately risk-averse, asymmetrical confidence intervals were applied (

0.33lowz  and 1.96uppz ) as well as asymmetrical catch multipliers ( 0.75l and 1.05u ). 

 

 

 

 

 

Index-type methods 

Assumptions The main assumption is that the index of abundance is a reliable indicator of 

trend in biomass. 

Catchability is assumed to be constant.  

Advantages Biomass dynamic models generally provide reliable estimates of stock status 

and management quantities. 

Index-based methods have been used extensively for assessment and 

management purposes, and have a good track record. 

Index-based harvest control rules can track trends in biomass effectively. 

These simple rules have been demonstrated by simulation to be robust to the 

high levels of uncertainty typically associated with data-poor stocks. 

CPUE-based rules are easily understood by all stakeholders and serve as an 

incentive for industry to fish towards biomass levels that yield a higher CPUE. 

Disadvantages 

 

Noisy data can obscure trends in biomass. 

Assessment methods need good contrast in the data to be able to estimate model 

parameters reliably. 

 

Table 5: Summary of general assumptions and advantages/disadvantages associated with Index-type methods. 
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2.6 MPA-based Harvest Control Rules (MPS-HCRs) 

 

No-take marine protected areas have great potential to provide improved management for data-poor 

stocks by comparing harvested stocks with populations inside MPAs. The methods generally rely on 

the assumption that the no-take areas provide a good proxy for the unfished population and are 

therefore suitable only if certain conditions are satisfied. These include good monitoring of well-

established MPAs to ensure equilibrium conditions, and sufficiently large MPAs to limit overspill of 

species into the surrounding fishing grounds. 

 

2.6.1 Density-ratio control rule (DRCR) 

 

McGillard et al. (2011) developed a survey-based control rule to generate total annual effort (TAE) 

advice based on the annual density ratio of a fish species outside an MPA to that inside. The density 

ratio can be used as an indicator of stock status if the density inside the reserve represents unfished 

conditions.  

 

The DRCR adjusts the effort for the next year up/down according to the value of the density ratio in 

the current year y: 

 
1 intercept+slope( )y y yE E x  (2.79) 

where the slope controls the magnitude of change in TAE, and the x-intercept is the target density 

ratio corresponding to zero change in effort. The density ratio in year y is given by: 
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D n n n
 (2.80) 

where N are the sampled number of fish in each stratum and n is the number of cells open to fishing 

near, far and in the MPA. 
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Figure 12: This plot (taken from McGilliard et al. 2011.) shows how annual TAE advice is adjusted according to 

the ratio of the density outside the reserve to that inside.  

 

 

Babcock and MacCall (2011) evaluated a similar metric for multi-species fisheries. The HCR reduces 

the catch if the density ratio between the outside and inside the reserve fall below a certain level. The 

density ratio for each species is given by the average number of fish seen per transect outside the 

reserve divided by the average number inside the reserve: 
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where N is the number of fish seen and n is the number of transects in fished areas or in the marine 

reserve. Multispecies density ratios are approximated by the mean of the density ratios for each 

species. To avoid unwanted fluctuations in catch advice due to recruitment variability and low sample 

sizes in the monitoring program, the rule can be stabilised by applying a multi-year density ratio. 

 

Input: The number of fish seen outside and inside the marine reserve during surveys.  

 

Assumptions: The main assumptions relate to adult fish movement which is taken to be relatively 

slow.  

 

Advantages: This approach is suitable for managing data-poor stocks as it requires no historical catch 

data and no size or age composition data. The density inside an MPA, used as a proxy for the unfished 

population, is subject to the same environmental conditions as the fished portion of the stock.  The 

multi-species approach is simple and integrates over many species to provide a community metric.  
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Disadvantages: It is difficult to obtain unbiased density estimates from fisheries-dependent sampling 

programs. The approach is not effective when an MPA is new, and the density ratio will not serve as a 

reliable indicator of stock status.  

 

Applications and reviews: 

 Wilson et al. (2010) developed an MPA-based decision tree for data-poor sedentary nearshore 

species based on indicators sampled from inside and outside MPAs, but here in combination 

with a MPA-based reference point. The rule was simulation tested using MSE to demonstrate 

robustness to process, observation and model uncertainty. The HCR consistently improved 

yields while maintaining biomass and SPR levels. They advise that this approach is suitable 

for species with small home ranges relative to the size of the MPA so that limited spill-over 

occurs, e.g. California’s nearshore rocky reef species such as sea urchins, abalone, crabs and 

lobsters. 

 McGilliard et al. (2011) used management strategy evaluation (MSE) to evaluate the 

performance of DRCR for a range of movement rates of larvae and adults (and other 

biological scenarios) to find the tuning parameters that maximised the cumulative catch. The 

performance of the rule was insensitive to the value chosen for the slope parameter, but 

highly sensitive to the x-intercept. The optimal value for the x-intercept increased with 

increasing variability in the survey data.  An x-intercept of 0.4 to 0.5 produced 75% or more 

of the cumulative catch produced by the optimal constant effort rule for a range of operating 

model scenarios. The optimal DRCR produced 90% of the cumulative catch obtained from an 

optimal constant effort rule. This simulation study showed that the DRCR was most sensitive 

to the movement patterns of larvae and adults and survey variability.   

 Based on the simulation study by Babcock and MacCall (2011), a target density ratio of 60% 

of mature fish, or 80% of all fish performed best for a wide range of fish life history 

characteristic. Multi-year density ratios were required to dampen variability. They emphasize 

the need to monitor indicators that the HCR may no longer be valid, for example a sudden 

drop in density inside the reserve, or a substantial change in relative density of species. 

 This HCR was evaluated at the CGFI Data-limited Assessment Workshop held in 2013. The 

Workshop noted that the monitoring program should provide adequate density information. 

Precaution is recommended when applying this rule to compensate for the lag needed for the 

reserve to take effect (Cummings et al. 2014). 
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MPA-based methods 

Assumptions MPA methods rely on the assumption that the reserves are well-enforced so that 

the conditions inside the reserve mimic unfished population dynamics.  

The size of the reserve is assumed to be sufficiently large to offset the effect of 

fish movement. 

Advantages No historical data are required. 

The TAC or TAE for outside the MPA is adjusted in an intuitive manner that is 

easily understood by stakeholders. 

MPAs allow for simple multi-species assessments of relative abundance 

amongst species. 

Disadvantages 

 

These methods provide advantages only to near-sedentary species. 

It may be difficult to obtain unbiased density estimates. 

The MPA must be well-monitored and long-established to provide resource 

benefits.  

 

Table 6: Summary of general assumptions and advantages/disadvantages associated with MPA-based methods. 
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2.7 Current scientific collaborations  

 

A number of initiatives that focus on the assessment and management of data-poor stocks/fisheries 

have been established to consolidate the vast array of research performed world-wide. Short 

descriptions of some of these initiatives follow.  

 

2.7.1 Strategic Initiative on Stock Assessment Methods (SISAM) 

 

This ICES initiative entailed the classification of stock assessment methods according to the amounts 

and/or types of data required. The goal of this classification is to guide fisheries scientists in the 

selection of the most appropriate stock assessment methods given the data available (SISAM 2012). 

However, as methods are likely to evolve and improve in response to lessons learned from their 

application, the process was seen to be iterative, consisting of a number of steps: 

1. Identification of the current set of methods available. 

2. Guidance to select the most appropriate method according to the application and data 

availability. 

3. Education and access to expert information regarding these methods. 

4. Encouragement to develop and test assessment methods in support of management 

requirements. 

 

SISAM endeavoured to contribute directly to steps 1 and 2 while serving as a catalyst for steps 3 and 

4. A range of assessment approaches was evaluated, from simple quantitative procedures suitable for 

data-poor stocks, to statistical assessments for data-rich stocks, as well as advanced multi-species and 

environmentally-linked models. To review these and other stock assessment issues, ICES organised a 

World Conference on Stock Assessment Methods for Sustainable Fisheries (WCSAM 2013) in 

Boston in July 2013 with an aim to explore the merits and performance of the assessment methods 

currently available for providing fisheries management advice, so as to highlight typical problem 

areas and to initiate the development of the next generation of state-of-the-science assessment models. 

 

2.7.2 Workshop on the Development of Assessments based on LIFE history traits and 

Exploitation Characteristics (WKLIFE) 

 

This ICES initiative is focussed on developing a methodological framework for providing 

assessments and advice on data-poor and method-poor stocks. Stocks are classified into categories 

according to the type and quality of the data and methods available. In addition, target categories are 
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identified for all stocks with the aim to move data- and method-poor stocks into higher categories 

over time. (ICES 2012a,b).  

The objectives are: 

a) Identify FMSY proxies for stocks without quantitative forecasts, based on life-history traits 

and exploitation characteristics. 

b) Identify methods for estimating current exploitation when data such as catch and survey 

data, are limited. 

c) Identify data-poor stocks for application of these methods. 

d) Identify the data that need to be collected to be able to implement points a) and b). 

e) Identify and evaluate multi-annual harvest control rules for application to stocks for 

which the approach suggested under a) and b) fail due to lack of data. 

Six categories were identified to classify stocks from data-rich to data-poor (ICES 2012b): 

Category 1. Data-rich stocks with accepted quantitative assessments. 

Category 2. Stocks with analytical assessments and forecasts that are treated qualitatively 

only. 

Category 3. Stocks for which survey-based assessments indicate trends. 

Category 4. Stocks for which reliable catch data are available.  

Category 5. Data-poor stocks. 

Category 6. Stocks for which landings are negligible and stocks from which bycatches are 

taken in minor amounts. 

 

2.7.3 Assessment for All (A4A) 

 

The Assessment for All (a4a) initiative of the European Commission Joint Research Centre (JRC) 

aims at increasing the number of stocks with analytical assessments, while simultaneously promoting 

a risk-based type of analysis, so that scientific advice provides policy and decision makers with a 

clearer perspective of the uncertainty existing on stock assessments and its propagation into advice 

(Jardim et al. In press).  

 

The approach developed to achieve this objective is to identify the major sources of uncertainty and to 

implement a framework that allows the analyst to incorporate these in an efficient and coherent way. 

One can make the analogy with building with Lego, where for each layer the builder may use the 

pieces provided by a particular boxset of his/her choice. In this manner, observation, process and 

model error (e.g. uncertainty about growth, reproduction, natural mortality, fishing selectivity and 

catchability) can be taken into account and their uncertainty propagated through the estimation of 
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population abundance and fishing mortality by the stock assessment model. Rather than selecting a 

single 'best' stock assessment model, this initiative suggests combining the final outcomes from a 

range of stock assessment models using model averaging (Millar et al. In press), although other 

solutions, such as scenario analysis, may also be implemented. 

 

The methodologies being developed are made available through a R/FLR package, FLa4a, published 

in the FLR repository (http://flr-project.org). 

 

The a4a objectives are: 

1. to develop a stock assessment approach for stocks with limited biological information and 

moderately long exploitation and abundance time series data, 

2. to encourage discussions about problems associated with performing stock assessments 

for a large number of stocks, and  

3. to build capacity for stock assessments. 

 

The main focus is on securing the robustness of management advice. The stocks assessment models 

and MSE tools are distributed as FLR packages (Kell et al. 2007). 

 

2.7.4 Data-Limited Fisheries Toolkit 

 

The Data-Limited Fisheries Toolkit was developed by Carruthers (2014) of the University of British 

Columbia Fisheries Centre as part of the Data-Limited Methods Workshop convened by the Natural 

Resources Defence Council (NRDC) in early 2014. The purpose of the Toolkit is to provide a 

transparent, reproducible mechanism for simulation testing different data-limited methods for 

generating catch advice and to evaluate their comparative performance. As of September 2014, the 

Toolkit featured closed-loop management strategy evaluation, over 40 data-limited methods, and 

various diagnostic tools such as sensitivity analysis and automated functions for determining which 

methods are available to apply given specific data limitations, and what additional information is 

needed for to be able to apply methods for which there is insufficient data. The Tookit developers are 

collaborating with various fishery management bodies on its application, including: the National 

Marine Fisheries Service Southeast and Northeast Science Centers, the Mid-Atlantic Fishery 

Management Council, and the Inter-American Tropical Tuna Commission. The Toolkit is freely 

available from the CRAN-R repository (http://cran.r-project.org/web/packages/DLMtool/index.html) 

and instructions for downloading the software, as well as a complete tutorial, are available at 

www.datalimitedtoolkit.com.  

 

http://www.datalimitedtoolkit.com/
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Potential benefits of the Toolkit include (Newman et al. 2014): 

 Powerful diagnostic tools for testing methods to generate catch advice. 

 Improved efficiency of stock assessment throughput (requires a day or two to complete 

analyses that would normally take weeks). 

 Free access to many data-limited methods. 

 Pre-tested computer code (avoids duplicative effort writing code). 

 Enhanced reliability (avoids review time wasted on bugs). 

 User-friendly graphical output. 

 Rapid execution and reduced computational workload for data-limited assessments. 

 Open access facilitates rapid incorporation and dissemination of new methods. 

 Facilitated simulation testing and direct comparison of methods. 

 

 

2.7.5 Environmental Defence Fund (EDF): catch share design manual 

 

The EDF is a non-profit environmental group based in the US dedicated inter alia to restoring 

fisheries by using catch shares. As part of this approach, Apel et al. (2013) developed a structured and 

integrated framework to produce adaptive and precautionary management guidance on the utilisation 

of data-poor assessment methods. This six-step framework consists of the following: 

Step 1: Assess the ecosystem status and impacts of fishing. 

Step 2: Assess the vulnerability of stocks to fishing pressure by conducting a Productivity 

and Susceptibility Analysis (PSA). 

Step 3: Estimate the level of stock depletion using methods such as the MPA density ratio, 

length-based indicators and the SPR-based decision tree. 

Step 4: Prioritise stocks for further assessment and precautionary management according to 

vulnerability and depletion levels. 

Step 5: Assess priority stocks to set catch limits or fishing mortality controls using data-poor 

assessment methods such as catch-MSY, DCAC and DB-SRA. 

Step 6: Collect additional data to improve future stock assessments to move data-poor stocks 

towards data-sufficient. 
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2.7.6 Science for Nature and People (SNAP): Managing Data-Limited Fisheries for Economic 

and Biological Objectives 

 

This working group was constituted in 2014 to develop novel assessment and management solutions 

for data-poor fisheries. The particular focus of SNAP is to bridge the current gap between the 

scientific assessments and their effective implementation.  The objectives of SNAP (2014) are as 

follows:  

1. Develop a comprehensive assessment and management framework for data-poor 

fisheries: 

a. Compile a data-base of the data-poor assessment methodologies currently 

available. 

b. Review social, economic and biological metrics that can be used as performance 

indicators. 

c. Categorise fishery archetypes in terms of life-history parameters, spatial scale, 

etc. 

d. Compare and contrast existing data-poor assessment methods using MSE. 

e. Develop a comprehensive framework to assess and manage data-poor fisheries 

and to provide guidance regarding the most suitable method according to fishery 

archetype and data availability. 

2. Evaluate the costs/benefits of additional data:  

a. Quantify the costs of collecting and analysing additional data for different 

fisheries archetypes. 

b. Evaluate the socio-economic and biological benefits of extra data to reduce 

uncertainty/risk. 

c. Design adaptive management guidelines for fishers. 

d. Provide guidance to maximise economic benefits resulting from monitoring, data 

collection and alternative assessment approaches.   

3. Implement assessment and management framework for depleted data-poor fisheries: 

a. Identify the data-poor fisheries for the case study. 

b. Train fishers to use the assessment and management framework. 

c. Organise the data. 

d. Design adaptive management and monitoring protocols. 

e. Organise workshops to discuss engaging local fishers in data collection, analysis, 

application and enforcement of management framework. 
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2.7.7 Technical experts overseeing third country expertise (TXOTX): 

 

This EU project was initiated in 2008 to coordinate the analysis of data and methods applied in 

regional assessment and management procedures for fish resources in the third country waters where 

the EU has important development goals, and where often the fisheries under harvest are data-poor. 

The aim of the project was to build a scientific network and identify opportunities for greater research 

coordination between these strategic regions and the EU. This research program was concluded in 

2011 (www.txotx.net). 

 

2.7.8 Developing probability model applications in data-poor fisheries (POORFISH) 

 

This EU initiative was established in 2005 to improve the quality of scientific advice relating to data-

poor fisheries by formulating harvest strategies to ensure sustainable use of marine ecosystems and 

provide better security to fishers and, in turn, promote greater stability in communities dependent on 

fisheries. POORFISH was concluded in 2008.  

 

Objectives included: 

1. To review potential assessment and management approaches for data-poor fisheries. 

2. To improve the structure and reliability of assessment models. 

3. To apply the model to case studies. 

4. To produce assessment and management guidelines for data-poor situations. 

 

 

2.7.9 The Marine Stewardship Council (MSC) 

 

While not a new initiative (originally started in 1997), this has gained momentum in establishing itself 

as the most recognisable global eco-label in the market place. The objective of this international fish 

produce ecolabelling and certification program is to contribute to the health of global fish stocks by 

transforming global seafood markets to stock seafood from sustainable sources, and influencing 

buyers to make informed choices when buying seafood. The MSC is currently addressing issues of 

certification of small-scale and developing-country fisheries. There are currently over 30 small scale 

and developing country fisheries in the MSC programme. The low level of participation is partly due 

to the lack of adequate data to evaluate sustainability, the high certification cost (cost of auditing and 

cost of implementing improvements to the fishery to meet requirements of the standard), limited 

availability of local auditing capacity, and lack of formal management measures and infrastructure 

often encountered in developing countries. To facilitate that more developing countries and small-
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scale fisheries participate in, and benefit from, certification, the FAO has developed and adopted 

international ecolabelling guidelines in 2005. These guidelines provide a global framework to ensure 

that ecolabelling programmes are implemented in a manner that is not detrimental to fisheries in 

developing countries and ensures that concerns raised by developing countries are addressed. For 

situations when data are limited, the FAO guidelines recommend the adoption of assessment methods 

appropriate to the fishery and that application of less elaborate assessment methods should not 

preclude certification. With this in mind, the MSC has commenced work to develop a risk-based 

assessment approach for data-poor fisheries. The LB-SPR approach (Section 2.3), funded by the 

Packard Foundation to the MSC, is an initiative to link the MSC’s standards for risk-based assessment 

with stock assessment models. 

 

2.8 Discussion 

 

The methods described in the sections above have been categorised according to method types and 

data requirements. However, there is much overlap between methods and data requirements as would 

be expected. Furthermore, these methods are generally not suitable for application in isolation, but 

better applied in combination, or in support of each other. This is particularly important for data-poor 

stocks which typically lack estimates of stock status. Therefore, before a suitable method is selected 

for purposes of generating management advice, some preliminary assessment(s) is/are recommended. 

These might include performing a PSA (Section 2.2) to rank the resource according to vulnerability to 

overfishing, followed by per-recruit analysis (Section 2.3) to compute appropriate management 

reference points. Length-based methods (Section 2.3) present cost-effective management options in 

the absence of time series data. Size-based methods such as LB-SPR (Section 2.3) could provide 

selectivity-based management to promote sustainable (albeit not economically optimal) harvesting of 

the resource until a direct index of abundance (survey) becomes available. A variety of methods for 

generating annual catch advice are summarised in Sections 2.4 to 2.6. Catch-only methods (Section 

2.4) are frequently applied to assess data-poor stocks, however these methods are notoriously 

unreliable in the absence of additional supporting biological (life-history) information and reliable 

estimate/distribution for current depletion. Index-type methods (Section 2.5) are typically preferred 

for management purposes and generating catch advice when a reliable index of abundance for the 

stock is available; however reliable survey or CPUE data are rarely available for data-poor fisheries. 

There are therefore no hard and fast rules when selecting the method (or suite of methods) that is/are 

most suitable to assess and manage a stock. To assist with selection, Table 7 gives a summary of 

methods, the data requirements, and the main advantages and disadvantages. 
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Model Method Input data Advantages Disadvantages Reference 

Qualitative 

and semi-

Quantitative 

Fishers Knowledge 

(FK) 

 

Very few: data 

are reconstructed 

from FK 

FK essential to 

reconstruct catch 

time series and to 

construct priors for 

model parameters  

FK prone to bias. 

No estimates of 

stock status. 

Orensanz et al. 

(2013) 

Productivity and 

Susceptibility 

Analyses (PSA) 

 

Some knowledge 

of life-history 

parameters and 

fishery attributes  

Prioritise stocks in 

terms of their 

productivity and 

susceptibility.  

Does not output 

quantitative 

management 

measures. No 

estimates of stock 

status 

Patrick et al. 

(2009) 

Length-based 

decision trees 

Rapid visual 

assessment 

(RVA) 

Local fishers take 

part in data-

collection, 

assessment and 

management of 

resource. 

This method is 

only suitable for 

sedentary 

nearshore species   

Prince (2010) 

Traffic-light 

framework 

Limit reference 

points based on 

life-history 

parameters or 

input from 

assessments 

Intuitive management 

approach  

 quantitative  Caddy 

(1999,2002) 

Per-Recruit 

and  

Length-

based 

Beverton-Holt 

 

Life-history 

parameters  

Simple to implement, 

few data required and 

widely used.  

Equilibrium model 

assumptions may 

not hold. No 

estimates of stock 

status. 

Beverton and Holt  

(1957) 

Length-Based 

Spawning Potential 

ratio 

(LB-SPR) 

 

Life-history 

parameters and 

length 

composition data 

Cost effective length-

based method for 

possible use in 

HCRs. No time-

series data required. 

Equilibrium model 

assumptions may 

not hold. 

Hordyk et al. 

(2014a) 

Length-based per-

recruit 

Life-history 

parameters and 

mean length data 

Provide estimate of 

M from length data. 

Change in F allowed.  

Knife-

edged/constant 

selectivity. 

Gedamke and 

Honig (2006) 

, , mat opt megaP P P  Length 

composition data 

Intuitive indicators 

for possible use in 

HCRs. 

Not yet simulation 

tested. 

Cope and Punt 

(2009) 

Bayesian length-

based indicators 

Life history 

parameters and 

length data 

Incorporates 

uncertainty. 

Equilibrium 

conditions 

unlikely to hold. 

Daan et al. (2005) 

Harvest Control 

Rules (HCRs) 

Mean length data Simple empirical 

rules provide  

intuitive 

management. Have 

been simulation 

tested. 

Lag time in 

response of HCR 

to changes in 

biomass.  

Geromont and 

Butterworth 

(2014a) 

Catch-based SHOT Catch time series Simple empirical 

methods to estimate 

status quo catch for 

forecasting.  

Reliability of the 

status quo catch is 

highly dependent 

on the reliability 

of the time series 

data 

Shepherd (1984) 

 

Depletion-Corrected 

Average catch 

(DCAC) 

Catch time-

series and prior 

distributions for

M , MSYL ,

MSYF  and stock 

status. 

Incorporates 

uncertainty and 

outputs distribution 

for the DCAC. 

Not applicable to 

severely depleted 

or highly 

productive stocks. 

Relies on 

estimates of 

depletion.  

MacCall (2009) 
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Catch Only Model 

(COM) 

Catch time-

series and prior 

distributions for 

, r K and x . 
 
 

Combines effort and 

biomass dynamics in 

one model. 

A complete 

(unregulated) 

catch time series is 

required.   

Vasconcellos and 

Cochrane (2005) 

State-Space catch-

Only Model 

(SSCOM) 

Catch time-

series and prior 

distributions for 

, r K , x , a

and 1E . 
 
 

Incorporates 

fluctuations in 

catchability. Flexible 

model framework to 

progress from data-

poor to data-

sufficient 

Complexity of 

model makes it 

less intuitive. 

Definition of prior 

distributions may 

be tricky. 

Thorson et al. 

(2013) 

Depletion-Based 

Stock Reduction 

Analysis  

(DB-SRA) 

Catch time-

series and prior 

distributions for 

M , MSYL ,

/MSYF M  and 

stock status. 

Outputs posterior 

distributions for 

sustainable yield and 

MSY. Medians and 

lower %-iles could be 

used in HCRs 

A complete catch 

time-series is 

required. Not 

suitable of short-

lived species with 

large recruitment 

fluctuations. 

Relies on 

estimates of 

depletion. 

Dick and MacCall 

(2011) 

Index-based Harvest Control 

Rules (HCRs) 

Reliable index of 

abundance  

Only the most recent 

period of the index is 

required. 

Not applicable if 

the data is not a 

reliable index of 

biomass 

Wayte (2009) 

Prince et al. 

(2011) 

Geromont and 

Butterworth 

(2014a,b) 

 An Index Method 

(AIM) 

Catch and 

abundance time 

series 

Can track biomass 

reliably. Outputs 

management 

reference points. 

Reliability 

depends heavily 

on the data quality 

(short, or noisy, 

time series) 

Rago (2008) 

Surplus Production 

models 

Catch and 

abundance time 

series 

Gives estimates of 

stock status and other 

management 

quantities. 

Need contrast in 

the time series. 

Prager (1992, 

1994) 

McAllister and 

Babcock (2006) 

MPAs  MPA Density ratio 

model 

Number of fish 

seen outside and 

inside the MPA 

Simple HCR that can 

be applied to stock 

complexes. 

Difficult to obtain 

unbiased density 

estimates. 

McGilliard et al. 

(2011), 

Babcock and 

MacCall (2011), 

Wilson et al. 

(2010) 

 

Table 7: A summary of data-poor assessment methods summarising the key advantages and disadvantages of 

each method. 
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Part 3 Simulations  

 

The majority of data-poor methods described in this document fall in the category of empirical harvest 

control rules, rather than statistical stock assessments that provide estimates (with distributions) of 

stock status and productivity. Moreover, with limited or poor data to inform these simple models, 

estimates of management quantities (such a MSY) can lead to unreliable or biased management 

advice. It is therefore imperative that these simple methods be simulation tested to evaluate their 

robustness to a full range of uncertainty associated with data-poor stocks/fisheries before they are 

applied to serve as a basis for management advice in particular cases.  

 

Management Strategy Evaluation (MSE) provides a scientifically defensible framework to simulation 

test alternative methods across a range of operating (population) models that represent different 

plausible realities. The performances of the different methods are then compared to ascertain which 

method is more likely to realise the management objectives for the stock under consideration, while 

taking full account of different sources of uncertainty (Punt et al. In press).  

 

Different implementations of MSE have been applied globally to evaluate the comparative 

performance of simple harvest control rules to set annual TACs.  In Australia, alternative harvest 

control rules for data-poor stocks (Tier 4) have been simulation tested within an MSE framework to 

select the best performing rule when data are limited (Wayne 2009, Prince 2010). In Europe, the ICES 

WKLIFE Working Group (ICES 2012b, ICES 2013e) has evaluated different empirical control rules 

with the aim to generate annual catch advice for ICES stocks that lack sufficient data for formal stock 

assessments (Categories 3 - 6). Geromont and Butterworth (2014a) simulation tested a number of 

simple generic control rules on generic Bayesian-type operating models that integrated over key 

uncertainties: model uncertainty, process error, observation error, and finally, implementation error. 

More recently, Carruthers (2014) developed a Data-Limited Methods toolkit (DLMtool) that allows 

for rapid testing of control rules on simulated stocks (Newman et al. 2014).  

 

Part 3 of this report compares the performance of a selection of empirical methods to generate TAC 

advice for two “real” data-poor stocks, South African panga and Jamaican queen conch. 

 

 

3.1 The Management Procedure (MP) Approach 

 

The MP approach, known as Management Strategy Evaluation (MSE) in Australia, is a system that 

encompasses all aspects of fisheries management, from defining the management objectives for 
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fisheries, to data collection and analysis, the development of harvest control rules that can be shown 

to be robust to key uncertainties via simulation testing, and monitoring (Punt 2006). Furthermore, the 

most compelling reason to use the MP approach is to take formal account of uncertainties as required 

by the Precautionary Approach and in line with the FAO Technical Guidelines for Responsible 

Fisheries (FAO 1996), as described below.  

 

In practice, the application of a MP approach comprises of a number of equally important steps as 

elaborated in Punt and Donovan (2007) and De Oliveira et al. (2008). These can be summarised as 

(see Figure 13):  

 

1) Specify strategic objectives: All stakeholders (industry, fishery regulatory bodies and 

scientists) take part in discussions to prioritise the most important biological, economic and 

social objectives. The management objectives for the fishery need to be identified upfront, 

and defined explicitly with the full support of all stakeholders, to ensure subsequent buy-in 

and compliance.  

2) Decide on performance measures: Quantify the qualitative management objectives defined in 

step 1. It is important to realize that it will not be possible to achieve every objective as there 

will be conflicts, e.g. between maximizing longer-term catches and minimizing risk to the 

resource. An iterative process may be required here, as stakeholders become better able to 

fully grasp what ranges of trade-off choices are possible only as computations proceed. 

3) Develop a set of operating models (OMs): These OMs must best represent the dynamics of 

the resource and fishery while also incorporating the key uncertainties. A Bayes-like approach 

is desirable for data-poor stocks for which data and knowledge regarding stock structure and 

productivity is limited; this approach provides one way to account for this by admitting the 

use of “prior” distributions for parameters based on information obtained from data-rich 

stocks. Stakeholders should take part in discussions to identify areas of concern and to 

delineate different plausible hypotheses, as well as to specify further plausible “prior” 

distributions by drawing on collective knowledge of the fishery. 

4) Specify a set of MPs: Identify a range of candidate MPs together with associated historical 

and future data required by each MP. An MP is essentially a formula for which the input is a 

pre-agreed set of resource monitoring data, and which outputs a regulatory measure such as a 

TAC or TAE value. For data-poor stocks, candidate MPs are typically very simple empirical 

harvest control rules that are easily understood by all stakeholders, and that rely on the regular 

availability of relatively few data only. 

5) Simulation test each MP over the range of OMs: This entails examining the candidates from 

step 4 in terms of the OMs developed in step 3 to determine which MP would best satisfy the 

management objectives defined in step 1, regardless of which OM might actually best 
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describe the true underlying dynamics. These tests for robustness of performance involve 

forward projection of the resource dynamics under each OM with catches set by the candidate 

MP, where these catches are based on simulated data which incorporate observation error. 

Such tests are the foundation of the MP development process. The future success of the end-

product relies on this step. 

6) Evaluate performance statistics: During the simulation testing of each candidate MP, the 

summary statistics defined in step 2 are output for inspection, comparison, MP tuning 

(adjusting the values of the control parameters of the MP to achieve particular objectives) and 

candidate MP rejection purposes.  

7) Select MP for implementation: Based on the performance statistics output for each candidate 

MP in the previous step, choose the MP that performs best in terms of the objectives specified 

in step 1. All stakeholders should take part in the MP selection process to ensure that their 

pre-defined objectives are met to the extent possible in relation to trade-offs which are 

acceptable, so as to promote understanding and collaboration between the different interest 

groups. Once selected, the MP runs as if on autopilot for typically 4 to 5 years.  

 

The choice of a range of OMs, similar to a suite of traditional stock assessment models, depends 

largely on the data available. For data-poor stocks where no or limited reliable data are available to 

include in a likelihood function for conditioning (fitting) the OM to available information, a Bayes-

like approach which relies on qualitative information for some parameter values is appropriately 

adopted, as is the case here. 
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Figure 13: A formal management procedure (MP) approach consists of seven main steps. 
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3.2 Operating models 

 

A Bayes-like approach has been adopted to evaluate a selection of simple candidate harvest control 

rules. The operating models (OMs) that form the basis of this comparative study are age-structured 

production models (ASPM). They include:  

- Model uncertainty, by effectively integrating over the ranges specified for model parameter 

values.  

- Observation error, taken into account by including stochastic components when generating 

future abundance index and length data.  

- Process error, by incorporating past and future recruitment and fishing selectivity fluctuations 

for each simulation.  

- Implementation error, by incorporating fluctuations about the historical catch time series and 

projected TAC advice. 

 

These sources of uncertainty are incorporated explicitly into the MP approach adopted here: simulated 

trajectories are generated by sampling from pre-specified distributions for key model variables such as 

the current depletion /sp sp

nB K  (from which the pre-exploitation equilibrium spawning biomass,
spK , 

is back-calculated), the “steepness” of the stock-recruit relationship h , natural mortality rate aM , the 

growth parameters, as well as for selectivity, stock-recruit and catch residuals. The distributions 

chosen are intended to reflect some of the qualitative and quantitative information available for the 

two data-poor stocks under consideration, while still allowing for the extent of model uncertainty to 

be expected in reality. A large set of biomass trajectories is generated by sampling from these 

distributions. Each population biomass trajectory, or simulation, corresponding to a plausible reality 

was then projected forward for twenty years under alternative MPs (or harvest control strategies). In 

order to ensure comprehensive sampling from these distributions, 1000 simulations were generated. 

Technical specifications of the OMs are detailed in Appendix B. 
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3.3 Candidate harvest control rules  

 

A number of empirical MPs (harvest control rules) for application to data-poor stocks are evaluated 

below. These simple MPs have been developed and applied for generating catch advice in different 

parts of the world in situations with limited data. The five candidate rules considered for simulation 

testing are summarised in  

Table 8. Detailed descriptions of these methods are given in Part 2 of this Report.  

 

The main advantage of empirical techniques lies in their simplicity, which makes them easy to 

understand and implement. A more intuitive rule that is well understood by all stakeholders 

encourages buy-in by industry and is more likely to lead to better compliance to management 

regulations. By contrast, statistical stock assessments are generally fully grasped only by a handful of 

scientists, and these complex models are therefore not really comprehended by the fishing community 

and/or the management agencies. This is particularly important in developing countries where 

numerical expertise is fairly limited. Furthermore, the high levels of uncertainty associated with data-

poor stocks may render fine-tuning of statistical assessments to update annual management advice 

counter-productive, and a more broad-brush (and precautionary) approach has been indicated to be 

more effective (Geromont and Butterworth 2014). 

 

Both constant catch and feedback strategies are evaluated to contrast the potential gain associated 

with the improved monitoring and data collection which the latter can take into account.   
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Summary of candidate MPs: 

Depletion Adjusted Catch Scalar (DACS): 

Catch time series over a stable period and 

estimate of current depletion 

2

1

/ ( 2 1 1)
y

y

y y

DACS s y y C

 

where 1 (0.5 / )sp

ns B K .

 
Depletion Corrected Average Catch 

(DCAC): 

 

Catch time series and estimates of relative 

depletion, ,  

 

/ ( )

yC
DCAC

n MSYL c M  

where is an estimate for relative depletion,

 
MSYL  is level of biomass at which MSY is achieved,  

M is the estimate for natural mortality, and 

/MSYc F M assumed to be equal to 1 for data-poor stocks. 

Index ratio: 

 

Mean length or survey/CPUE time series. 

3

1

1 1 8

4

1/ 3

1/ 5

y

yy

y y y

yy

I
TAC TAC

I
 

where yI is the index of abundance. 

Index slope: 

 

Mean length or survey/CPUE time series. 

1 (1 )y y yTAC TAC s  

where 

0.4  and 
ys is the slope of the CPUE over the last 5 

years. 

 

Target MP (Itarget):  

 

Mean length or survey/CPUE time series, 

guess of /n MSYB B  to set the target. 

0

*

1 arg 0
0.5 [1 ( )]

recent

y

y t et

I I
TAC TAC

I I
 if

0recent

yI I , or 

2

*

1 0
0.5

recent

y

y

I
TAC TAC

I
 if

0recent

yI I , where 

arg /t et

n MSYI I B B , 1/ yI n I  

0 arg / 2t etI I , and 
*TAC DACS or DCAC . 

 

 

Table 8: The five types of control rules considered here to provide catch advice for data-poor stocks. Detailed 

descriptions of these “off-the-shelf” rules can be found in Part 2 of this Report. 
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3.4 Management performance statistics 

 

For these simulations, performance is evaluated over a projection period of 20 years, from year 2014 

to 2033 for South African panga and from 2013 to 2032 for Jamaican conch. Four statistics are used 

to compare performance by the various MPs considered in the main text.  

 

 /sp sp

finalB K , the final biomass depletion where 
sp

finalB is the spawning biomass for the last year 

of the projection period as given by equation (B.7) in Appendix B. 

 /sp sp

final msyB B , the spawning biomass at the end of the projection period, as a fraction of
sp

msyB , 

the deterministic equilibrium spawning biomass at which maximum sustainable yield is 

achieved, given by:  

min

m
sp eq

msy a a a

a a

B R f w N

 

where 
eq

aN are the equilibrium population numbers-at-age corresponding to msyF  (the fishing 

mortality at which the maximum yield is obtained) for ,n aS  (the fishing selectivity vector at 

the end of the pre-management period) and M  (the natural mortality), with R  the number of 

recruits which is given by: 

( / )R SPR  

where SPR  is the equilibrium spawning biomass per recruit at msyF and  and  are the 

Beverton-Holt stock-recruit parameters. Note that a different 
sp

msyB  is computed for each 

simulation, corresponding to the different values for M and ,n aS  (which are re-sampled per 

simulation) as well as the stock-recruit parameters  and  (which are re-computed for 

different values of 
spK and h ). 

 

 futureTAC , the average future annual TAC, given by: 

20

1

1/ 20
n

future y

y n

TAC TAC  

 

 AAV , the average inter-annual variation in future TAC given by:   

20
1

1 1

1/ 20
n

y y

y n y

TAC TAC
AAV

TAC
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 futureC , the average future annual total catch, accounting for implementation error (which is 

not included in the TAC), given by: 

20

1

1/ 20
n

future y

y n

C C  

 

Target and limit reference points were chosen as 20% above and 50% of MSYB , respectively. 

Expressed in terms of the pre-exploitation biomass, K, and assuming that maximum sustainable yield 

is achieved at 0.4 spMSYL K , the proxy target and limit reference points are approximately 50% 

and 20% of the pre-exploitation spawning biomass.  
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3.5 Application to example stocks 

 

3.5.1 South African panga 

 

The South African panga stock (Pterogymnus lanniarius) provides a minor by-catch in the valuable 

demersal trawl fishery for hake and is also caught by the commercial linefishery. Though not 

currently regulated, control could be effected in a manner similar to some other species which are by-

caught in the hake trawl fishery that are subject to precautionary upper catch limits (PUCLs). The 

stock is considered data poor as the trawl catch time series available does not reflect the total annual 

removals. For the data considered here, the total annual landings from the trawl fishery have been 

inflated by 30% to approximately reflect catches from the linefishery. Regular surveys for the data-

rich high-value target stock (hake) provide a survey index of abundance for panga (Tracey 

Fairweather pers. comm.). 

 

Nearly twenty years ago, a stock assessment was performed by Booth and Punt (1998) by fitting an 

age-structured production model to biomass indices derived from the trawl surveys. These results 

showed that the panga population had recovered from low levels in the mid-1970s and that higher 

levels of fishing mortality would likely be sustainable. Annual catches have subsequently increased 

substantially, although no further stock assessments have been performed for almost two decades. 

There is thus a pressing need to ascertain whether current fishing mortality is sustainable. 

 

3.5.1.1 Operating model parameters 

 

The operating model (OM), described in Appendix B, is conditioned on fishery and biological parameter ranges 

which are based on estimates from Booth and Buxton (1997a and b).  

Table 9 summarizes the “prior” distributions and fixed parameter choices assumed for the operating 

model. To account for high levels of uncertainty typical for data-poor stocks and associated parameter 

estimates, fairly wide parameter distributions have been adopted to condition the operating model. 

Note that the distribution selected for current depletion is much lower than the point estimate for 1995 

due to subsequent continued high catches. 
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Parameter Point estimate  

(from literature) 

Distribution assumed for base case simulations 

Minimum age 0 years  

Maximum age 20 years  

Age-at-maturity 4 years (204mm)  

Age at first capture 5 years (232mm)  

Von Bertalanffy growth:   

 

379.4l mm 2(379.4,0.1 )N
 

0.13yr
-1

 2(0.13,0.1 )N
 

0 1.78t years 2( 1.78,0.1 )N
 

0.00002 g mm
-3.013

 2(0.00002,0.1 )N
 

3.013  2(3.013,0.1 )N
 

Natural mortality rate: M 0.28 yr
-1

 [0.2,0.4]U
 

Selectivity: 50a  
5.5 years Log-normal error distribution of residuals 

2

, (0,0.4 )y a N
 Selectivity:  0.6 yr

-1
 

Stock-recruitment  Beverton-Holt
 

Log-normal error distribution of residuals 

2(0,0.5 )y N  

Steepness h 0.59 [0.5,0.7]U  

/spB K  0.67 [0.1,0.3]U  

 

Table 9:  Parameter estimates taken from Booth and Buxton (1997a, 1997b) – the estimate for the steepness 

parameter, h, and spawning biomass depletion in 1995 is from Booth and Punt (1998) for an estimate for M of 

0.28 yr
-1

. Appendix B provides parameter definitions. 

  

 

Age 0 1 2 3 4 5 6 7 8 9+ 

com

aS  0 0 0.01 0.03 0.16 0.5 0.84 0.97 0.99 1 

survey

aS  0 0 0 0 0 1 1 1 1 1 

 

Table 10: Logistic fishing selectivity-at-age vector for panga for the commercial fleet and the survey vessel 

(Booth and Punt 1998). 
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3.5.1.2 Data  

Year Landings  Survey  Mean length (mm) 

1983 41.06     

1984 336.64     

1985 652.50     

1986 762.07     

1987 1011.01     

1988 884.82 50.62 255 

1989 666.44 58.97 268 

1990 591.20 57.24 267 

1991 578.55 88.75  

1992 717.83 56.19 263 

1993 905.69 89.82 250 

1994 675.01 68.74 267 

1995 845.51 103.13 264 

1996 784.30 88.60 228 

1997 977.24 105.51 254 

1998 940.37    

1999 1061.05 129.15 249 

2000 1044.26 80.12 277 

2001 1325.47    

2002 1501.61    

2003 1748.56 91.25 267 

2004 1629.13 85.01 277 

2005 1303.69 59.58 261 

2006 1132.07 108.51 280 

2007 1142.88 38.51 282 

2008 1341.67 63.55 241 

2009 1812.84 62.66 237 

2010 1871.75 42.88 278 

2011 1422.16 71.74 278 

2012 1068.13     

2013 951.33     

 

Table 11: Time series data for the panga bycatch in the demersal trawl fishery (courtesy of Tracey Fairweather, 

DAFF). The landings have been inflated by 30% to account for landings by the commercial linefishery. The 

survey and length indices are from data collected by the autumn demersal trawl surveys. 
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Figure 14: Top plot: Annual landings of panga by the demersal hake-directed trawl fishery are indicated by the 

green triangles. In the absence of landings data from the commercial line fishery, it is assumed that the line 

fishery catch is about 30% of the trawl bycatch. The total annual panga catch from both fisheries is 

approximated by simply inflating the trawl bycatch by 30% (indicated by the blue diamonds). Bottom plot: The 

blue diamonds correspond to the index of abundance provided by the demersal trawl surveys. The red squares 

correspond to the annual mean length in the survey catch. Panga landings and survey data from the demersal 

trawl fishery were obtained from Tracey Fairweather, DAFF (pers. comm.). 
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3.5.1.3 Results 

 

Table 12 gives the TAC for the next year (2014) when applying the six “off the shelf” MPs, 

summarized in  

Table 8, to the historical data in Table 11. The TAC advice for 2014 ranges between 524 to 983 tons, 

depending on which harvest control rule is applied, compared to a total catch of 951 tons assumed to 

have been taken in 2013. For the constant catch strategies (DACS and DCAC), depletion was 

assumed to be 0.3 for calculating the TAC. 

 

Table 13 shows medians and 90% probability intervals for pertinent management quantities when 

projecting forward for twenty years under catch advice generated by these control rules. These 

stochastic projections include model uncertainty (by integrating over the wide ranges assumed for 

model parameters), process error (by allowing for fluctuations about fishing selectivity and the stock-

recruitment function), observation error (by incorporating stochastic effects in the future data 

generated by the operating model) and implementation error (by adding bias and random variations to 

historical catch data as well as projected TAC advice). Given the extent of uncertainty, none of the 

candidate MPs, except Itarget, satisfies the risk criterion by ensuring that the spawning biomass at the 

end of the projection period exceeds the limit reference point of 0.2K at the lower percentile (second 

row of results in Table 13).  

 

Figure 15 shows a subset of biomass, TAC and catch trajectories under alternative harvest control 

rules. While the TAC trajectories differ markedly from one strategy to another, the “true” total catch 

distributions are difficult to distinguish once implementation error is added. In the absence of annual 

assessments to inform the DCAC, this rule is essentially constant catch rule which cannot adjust TAC 

downwards when biomass levels are low (top row of plots). While incorporating feedback from the 

data to some extent, the TAC advice generated by the Ltarget and Islope rules is not adequately 

conservative to ensure subsequent increases in spawning biomass (second and fourth row of plots). 

The Iratio and Itarget rules are more conservative and take less catch initially, thereby ensuring faster 

spawning biomass recovery (third and last row of plots).   

 

Pertinent performance statistics are compared for the different harvesting strategies in Figure 16. The 

top plot shows the distribution for spawning biomass depletion at the end of the 20-year projection 

period. The second plot shows the same, but here in terms of MSYB rather than the pre-exploitation 

biomass, K . The target and limit reference points are indicated by the solid and dotted horizontal lines 

respectively. The third plot shows 90% probability intervals for the average TAC achieved by the 

alternative rules over the projection period, followed by a plot comparing the average inter-annual 
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variation in TAC for each of the rules. Note that the inter-annual variation in the TAC was restricted 

to a maximum of 15% for all candidates other than the constant catch type rules. The bottom plot 

compares the median and 90% probability intervals for “true” average catch under the different catch 

strategies when allowing for implementation error and bias. It is clear from the top two plots that the 

DACS, DCAC and Ltarget rules are not sufficiently precautionary, with the distributions for the final 

spawning stock biomass extending well below the limit reference points of 0.2K and 0.5BMSY 

respectively at the lower percentiles. With no, or very little, feedback, these rules are associated with 

zero, or very low, inter-annual changes in TAC advice. However, if very little is known about stock-

status, feedback and corresponding adjustments to TAC advice become that much more important in 

order to move/maintain the stock to/at safe levels. Of the feedback strategies that rely on a survey 

data, Islope is not sufficiently reactive and fails to recover the stock to the target biomass level in 

median terms over the 20-year projection period. The Iratio rule fares somewhat better, but only 

Itarget is able to ensure adequate recovery from low biomass levels (0.1 to 0.3K) to the target 

spawning biomass of 0.5K.  

 

The trade-offs between potential yield and associated biological risk the candidate HRCs are 

compared in Figure 17. The best performing rules would lie towards the top right of these plots, i.e.  

the highest median yield and the largest stock size in terms of the pre-exploitation level. While better 

performance can undoubtedly be obtained for these strategies by tuning the control parameters to 

obtain better yield-risk performance, the objective here was to see how well these “off-the-shelf” type 

rules would perform when the data are limited and noisy. The dashed lines indicate different risk 

levels associated when projecting under alternative constant catches, ranging from 300 to 1000 tons. 

This provides a baseline with which to compare feedback strategies. 

 

As expected, the DACS and DCAC strategies (which incorporate no index of abundance and therefore 

have no feed-back mechanism) perform the worst, lying on the yield-risk baseline. The rules that 

incorporate a direct index of abundance as provided by the survey data outperform the length-based 

rule (dark dot, top plot) that relies on information in the mean length time-series. This poor 

performance is due to the lack of trend information in the mean length time-series (see Figure 14). 

This is most likely due to the lag in feedback to be expected from the mean length index in response 

to a change in stock biomass. The three survey-based MPs (Itarget, Iratio and Islope) all lie well 

above and to the right of the baseline, providing better yield-risk performance. Of these feedback 

strategies, the Itarget (that relies on a survey time-series) is the most risk-averse, succeeding to 

maintain the spawning biomass above the limit reference point of 20% of the pre-exploitation level.  
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3.5.1.4 Discussion and conclusions 

 

While the South African  panga stock might be considered as “data-rich” thanks to regular demersal 

trawl surveys, it suffers from poor quality of data due to the high levels of uncertainty regarding total 

removals by different fleets. In particular, no catch or CPUE data could be obtained from the 

commercial line-fishery, rendering the status of this stock highly uncertain. The extent to which 

uncertainty has been incorporated in the operating model, in particular uncertainty regarding total 

removals and the full extent of implementation error, has resulted in obscuring management effects 

under the candidate harvest control rules investigated. Once noise and bias are added to the TAC 

advice, the subsequent effect on the stock biomass is “diluted”, but some effect does still remain.   

This uncertainty- and noise-rich environment will be an unavoidable reality for most data-poor stocks. 

An additional disadvantage for low-value data-poor stocks is the cost of tuning stock-specific control 

rules: in the vast majority of cases, “off-the-shelf” rules will have to suffice.  

 

Given the high levels of uncertainty about the stock dynamics and fishery data some broad 

conclusions can nevertheless be drawn:  of the off-the-shelf control rules evaluated, the target-based 

rule that relies on a survey index is the most risk averse. At the other extreme, the constant catch-

strategies exhibit the worst performance from a risk point of view. With no feedback, such strategies 

need to be rather conservative and take less catch on average. This is best illustrated by examination 

of the yield-risk results in Figure 17. To exceed the risk limit reference point of 0.2K at the 5%-ile, the 

Itarget rule (blue diamond) achieves an average future catch of over 600 tons compared to a constant 

catch (dashed line) of just over 400 tons (see grey arrow in top plot). Conversely, for the same 

average future catch of 600 tons, the constant catch strategy (as provided under the DACS rule) 

results in double the risk of resource depletion compared to the Itarget strategy (see grey arrow in 

bottom plot).  

 

Figure 17 clearly illustrates the value of a survey index for management purposes. From these initial 

results, the potential gain in terms of average yield provided by the survey index of abundance is 

approximately 200 tons (50% increase in average catch at the limit reference point) while maintaining 

the same biological risk.    
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TAC advice for 2014 Harvest control rules and choice of control parameters 

Depletion Adjusted Catch Scalar (DACS): 

 

DACS=610 tons 

(assume current depletion is 0.3) 

2

1

/ ( 2 1 1)
y

y

y y

DACS s y y C

 

where 

1 (0.5 / ) 0.8s B K , and 

 1 1988y and 2 1997y . 

Depletion Corrected Average Catch (DCAC): 

 

DCAC=861 tons 

(assume current depletion is 0.3) 

2013

1983

/ ( )

yC
DCAC

n MSYL c M
 

where 1 / 0.7B K  

31n , 0.4MSYL , 0.3M , and 1c . 

Length target (Ltarget):  

 

Ltarget=884 tons 

0

*

2014 arg
0.5 [1 ( )]

recent

y

t et

L L
TAC TAC

L L   

where recentL is average index over the most recent 3 years, 

target 0.75 0.25 269mmF M cL L L L ,

0 target / 2I I , and 
*TAC DCAC  

Index ratio (Iratio): 

 

Iratio=791 tons 

2011

2009
2014 2013 2008

2004

1/ 3

1/ 5

y

y

I
TAC TAC

I
 

Index slope (Islope) 

 

Islope=983 tons 

2014 2013(1 )yTAC TAC s
 

where 

0.4  and 
ys is the slope of the CPUE over the last 5 years. 

Index target (Itarget):  

 

Itarget=524 tons 

0

*

2014 arg 0
0.5 [1 ( )]

recent

y

t et

I I
TAC TAC

I I   

where 
recentI is average index over the most recent 5 years. 

target 0.4 / 0.3 92I I , 1/ yI n I , 
0 target / 2I I , 

and 
*TAC DCAC . 

 

Table 12: MP generated TAC advice when applying the six “off-the-shelf” control rules to the panga data.   
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 DACS DCAC Ltarget Iratio Islope Itarget 

2013 /sp spB K  0.23 

(0.12, 0.29) 

0.23 

(0.12, 0.29) 

0.23 

(0.12, 0.29) 

0.23 

(0.12, 0.29) 

0.23 

(0.12, 0.29) 

0.23 

(0.12, 0.29) 

2033 /sp spB K  0.49 

(0.10, 0.68) 

0.31 

(0.07, 0.57) 

0.37 

(0.08, 0.62) 

0.42 

(0.16, 0.62) 

0.32 

(0.10, 0.51) 

0.49 

(0.22, 0.64) 

2013 /sp sp

MSYB B  0.69 

(0.36, 0.90) 

0.69 

(0.36, 0.90) 

0.69 

(0.36, 0.91) 

0.69 

(0.36, 0.90) 

0.69 

(0.36, 0.90) 

0.69 

(0.36, 0.91) 

2033 /sp sp

MSYB B  1.45 

(0.30, 2.11) 

0.91 

(0.21, 1.75) 

1.09 

(0.23, 1.89) 

1.25 

(0.46, 1.90) 

0.95 

(0.29, 1.56) 

1.44 

(0.64, 1.97) 

futureTAC
 

624 

(624, 624) 

861 

(861, 861) 

767 

(653, 888) 

690 

(472, 957) 

847 

(644, 975) 

619 

(406, 781) 

AAV 0.02 

(0.02, 0.02) 

0.00 

(0.00, 0.00) 

0.03 

(0.03, 0.05) 

0.13 

(0.11, 0.15) 

0.05 

(0.03, 0.07) 

0.12 

(0.09, 0.15) 

futureC  

(implementation error) 

651 

(535, 795) 

900 

(727, 1092) 

798 

(627, 1025) 

718 

(486, 1013) 

872 

(667, 1093) 

644 

(425, 847) 

 

Table 13: Medians (with 5% and 95%-iles in parenthesis) of summary performance statistics are shown for the 

six candidate “off the shelf” rules (i.e. no tuning of MP control parameters to improve performance). The 

parameter distributions for the operating model are summarized in Table 12. A total of 1000 simulations were 

performed. Units, where pertinent, are tons. The inter-annual fluctuations in TAC were restricted to 15% for all 

feedback MPs.  
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Figure 15: Plots of the projections under alternative harvesting strategies. The left-hand column of plots show 

spawning biomass as a fraction of MSYB , the middle column shows the projected TACs under different 

harvesting strategies, while the right-hand column represents the “true” past and projected catches when 

incorporating implementation error. The trajectories correspond to the first thirty simulations of the one 

thousand performed. 
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Figure 16: Comparison of management statistics for the six harvest control rules. The top two plots compare 

spawning biomass distributions for the final year of the projection period, i.e. 2033.The inter-annual variation in 

TAC was restricted to a maximum of 15% for all candidate rules (excluding the constant catch rules), although 

this constraint came to be applied for the Iratio and Itarget rules only.   
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Figure 17: Risk versus yield achieved by the “off-the-shelf” MPs. The solid horizontal lines indicate the 

biological limit reference point (0.2K). The dashed lines correspond to increasing biological risk associated with 

alternative constant catch strategies ranging from 300 to 1000 tons. The grey arrows indicate the difference in 

potential yield under constant catch and feedback strategies (top plot) and the increased risk associated with 

non-feedback strategies for the same average yield (bottom plot). 
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3.5.2 Jamaican queen conch 

 

Queen conch (strombus gigas) is Jamaica’s most valuable fishery, mainly geared for the export 

market. The fishery developed rapidly in 1990’s with the main harvest coming from the Pedro Bank 

where most large adult conch are found. With the aim to monitor and control the conch fishery to 

achieve optimum sustainable yields, a Queen Conch Fishery Management Plan was introduced in 

1994 to set guidelines for the quota management system and an annual National Total Allowable 

Catch (NTAC) based on the best available scientific data (FAO Western Central Atlantic Fishery 

Commission 2013). Even though the stock is under formal management by both national and 

international institutional arrangements, with a CITES Appendix II listing in 1992, Aiken et al (2006) 

warn of the possibility of continued high levels of poaching and under-reporting of catches.  

 

A Schaefer model has been applied to assess the stock in the past, and resulted in estimates of MSY of 

715 (corresponding to a high intrinsic growth rate of 0.5) and 1297 tons (corresponding to a low 

intrinsic growth rate of 0.24) (CFMC/CFRAMP 1999). This divergence in results underscores the 

high level of uncertainty regarding the dynamics of the stock and what would constitute sustainable 

levels of harvest. Aiken et al. (2006) estimated the stock abundance to be stable in 2002. Healthy 

stock densities in all surveys have been reported since 1994, although the most recent 2007 estimate is 

somewhat lower than before. A preliminary Schaefer assessment by FAO conducted this year 

estimates biomass to be well above MSY level. However, the Schaefer model biomass estimates do 

not follow the recent downward trend in the survey index (Marcelo Vasconcellos, FAO pers. comm.). 

With this current uncertainty about stock status, a reliable target for the NTAC is required to ensure 

sustainable use of the stock.  
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3.5.2.1 Operating model parameters 

 

Based on current estimates of spawning biomass depletion from Schaefer assessments (Marcelo 

Vasconcellos, FAO pers. comm.), a depletion range from 0.3 to 0.5K was assumed for the base case 

OM.  

 

Growth of conch is modeled in two stages: growth in juvenile conch is measured in shell length, while 

that of adults is measured in lip thickness, with each stage modeled by a separate von Bertalanffy 

function. However, for simplicity here a combined model for growth, developed by Appeldoorn 

(2005), has been used for this study (see Figure 18). 

 

The natural mortality rate for conch is assumed to be constant over all ages for the base case 

simulations. However, a natural mortality function which decreases with age and has the form

0.242 4.33 /aM a  (Table 14) was suggested at the queen conch stock assessment and 

management workshop held in Belize City in 1999 (CFMC/CFRAMP 1999, SEDAR 2007, McCarthy 

2008). These function parameter values result in negative mortality rates at older ages and the 

workshop recommended that mortality rates be restricted to a minimum of 0.1yr
-1

 for older conch. 

This restricted function was adopted for some robustness tests to eliminate implausible values for 

natural mortality rate when sampling parameter values from distributions (see Table 15 for parameter 

ranges).  

 

To account for possible under-reporting of catches and poaching (Aiken et al. 2006), implementation 

error has been incorporated in this analysis. The historical catches are assumed to be negatively 

biased, and in addition some random fluctuations about reported total landings are assumed (see 

Appendix B). 

 

Age 0 1 2 3 4 5 6 7 8 9 10 11 12+ 

Ma 4.09 1.92 1.20 0.84 0.62 0.48 0.38 0.30 0.24 0.19 0.15 0.12 0.1 

com

aS  0 0 0.5 0.8 1 1 1 1 1 1 1 1 1 

survey

aS  0 0 1 1 1 1 1 1 1 1 1 1 1 

 

Table 14: Age-dependent natural mortality and commercial fishing selectivity values assumed for calculations. 

Fully selected selectivity from age 1 is assumed for the surveys (McCarthy 2008, Morris 2013, Marcelo 

Vasconcellos, FAO pers. comm.). 
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Parameter Point Estimate  Distribution assumed 

for base case 

simulations 

Minimum age 0 years  

Maximum age 30 years  

Age-at-maturity 3.2-6 years [3,6]U  

Growth: 

 

exp( (1 exp( )))aw l a  

 

 

20.12l cm 2(20.12,0.1 )N  

1.275  2(1.275,0.1 )N  

74.394 10  
7 2(4.394 10 ,0.1 )N  

Natural mortality rate 

 

Base case: age-independent [0.05,0.3]U  

Age-dependent: ( / )aM a  

(with min 0.1aM ) 

 

0.242  [ 0.3, 0.2]U  

4.33     [3.0,5.0]U  

Commercial selectivity 

 

Log-normal error distribution of residuals 

 

2

, (0,0.4 )y a N
 

Steepness h High density dependence [0.5,0.7]U  

Current depletion /sp

nB K  [0.3,0.5]U  

Implementation error 

 

Log-normal error distribution of residuals 

 

2( ,0.2 )y CN  

[0,0.1]C U  

 

Table 15: Parameter estimates and ranges based on Appeldoorn (2005a, b). The range assumed for the steepness 

parameter, h, is based on density-dependence estimates reported in Stoner and Ray-Culp (2000). The age-

dependent natural mortality function parameterisation is based on that reported in McCarthy (2008), but here 

excluding negative aM at old ages. To account for the high levels of uncertainty typical for data-poor stocks 

and associated parameter estimates, fairly wide parameter distributions have been adopted to condition the 

operating model. Details regarding parameter specifications can be found in Appendix B. 
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Figure 18: The squares represent the growth curve for conch for 50% cleaned meat weight-at-age in grams 

(Appeldoorn 2005b). The age-dependent natural mortality rate (CFMC/CFRAMP 1999) is indicated by the 

diamonds. Note, however, that M is assumed to be age-independent for the base case operating model. 
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3.5.2.2 Data 

 

Catch data reported to FAO are given in Table 16 and plotted in Figure 19. The first column 

corresponds to annual catches in tons of live weight. Prior to 1988, the fishery was artisanal and 

annual catches were comparatively small with exports less than 50 tons per annum. To convert these 

catches to 50% cleaned (the way conch is exported from Jamaica) a conversion factor of 7.5 was 

applied to correspond to the National Total Allowable catch (NTAC) (Marcelo Vasconcellos, FAO. 

pers. comm.). Due to prolonged legal battles the Jamaican conch fishing season was closed during the 

2000/2001 season (Aiken et al. 2006). 

 

Multi-annual visual surveys are conducted on the Pedro Bank by commercial and scientific divers. 

These surveys assess three depth strata (0 to 10m, 10 to 20m and 20 to 30m). The first three surveys 

(1994, 1997 and 2002) showed an increase in density with depth. The survey performed in 2007 

indicated a low density of conch at depths deeper than 10 meters, with most conch located in the 

artisanal (0-10m) stratum, and with a 50% decrease in associated biomass estimate from the previous 

survey estimate. However, the most recent survey conducted in 2011 indicated higher density 

estimates at depths deeper than 10m, comparable to the pre-2007 estimates (Morris 2013).   
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Year Catch:  

live weight  

Catch:  

(7.5 conversion)   

50% cleaned meat  

NTAC (tons) 

50% cleaned meat  

 

Survey  

biomass estimates 

 

1988 4500.00 600   

1989 5250.00 700   

1990 6000.00 800   

1991 7500.00 1000   

1992 11250.00 1500   

1993 15000.00 2000   

1994 17250.00 2300 3000 13325.48 

1995 15998.00 2133 2000  

1996 10740.00 1432 1900  

1997 13658.00 1821 1800 12203.27 

1998 12750.00 1700 1700  

1999 10245.00 1366 1366  

2000     

2001 9120.00 1216 1216  

2002 7095.00 946 946 15305.85 

2003 3780.00 504 950  

2004 4125.00 550 550  

2005 4800.00 640 640  

2006 4875.00 650 690  

2007 4800.00 640 650 7421.78 

2008 3000.00 400 400  

2009 3000.00 400 400  

2010 3300.00 440 400  

2011 3000.00 400 400 12213.98 

2012 3000.00 400   

 

Table 16: Total annual catches for the Jamaican queen conch stock in tons in terms of live meat weight (column 

1) and “50% cleaned” weight using a 7.5 conversion factor (column 2). The National Total Allowable Catch 

(NTAC), expressed in terms of “50% cleaned” weight, is given in column 3. Survey biomass estimates in tons 

are given in column 4. Units are tons. Catch data are from FAO FishStat; NTACs and survey biomass estimates 

are from Morris (2013). 
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Figure 19: The national total allowable catches (NTACs) for Jamaican conch are indicated by the crosses. The 

blue and green triangles correspond to FAO estimates of 50% cleaned meat weight in tons when applying a 

conversion factors of7.5.  Survey estimates for the years 1994, 1997, 2002, 2007 and 2011 are indicated by the 

red squares (Morris 2013). 
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3.5.2.3 Results 

 

Table 17 gives the TAC for the next year (2013) when applying the five candidate MPs, or harvest 

control rules, to the historical data in Table 16. According to these “off-the-shelf” rules, the TAC 

advice for 2013 ranges from 289 to as high as 899 tons in terms of 50% cleaned wet meat weight, 

compared to a “50% cleaned” catch of 400 tons reported for 2012. In order to apply the constant catch 

strategies (DACS and DCAC), an initial guess for current depletion is required – a value of 0.4, which 

corresponds to the midpoint of the depletion range assumed by the base case operating model, was 

assumed. 

 

Table 18 shows medians and 90% probability intervals for the base case OM when projection forward 

for 20 years under five alternative control rules: two constant catch-type strategies and three feed-

back rules based on the multi-annual survey biomass estimates. The feedback strategies (Iratio, Islope 

and Itarget) rely on new survey biomass estimate to become available every four years to adjust the 

TAC. For the intervening years, the TAC is simply left unchanged. Of the candidate rules, all 

strategies except DCAC are able to satisfy the risk criteria by ensuring (at the 5%-ile level)  a stock 

depletion above 20% at the end of the twenty-year projection period. The DCAC of 899 tons has a 

high probability of resulting in a large decrease in spawning biomass over the projection period and is 

therefore not a viable option.  

 

Figure 20 shows worm plots for the first 30 simulations of a 1000 performed under alternative MPs 

for the base case OM. Spawning biomass is plotted as a fraction of virgin biomass in the first column 

of these plots; the second column shows TAC advice generated by the different strategies; the third 

column depicts the “true” catches when accounting for implementation error. It is clear from the left-

hand plots that application of all candidate rules lead to continued stock rebuilding, with the exception 

of DCAC for which catches are clearly not sustainable given the underlying assumptions for the base 

case OM. Initial inspection of the right-hand column of plots seem to indicate that the benefits of the 

multi-annual adjustments to TAC advice generated by the feed-back strategies are lost once 

implementation error is incorporated. However, MPs that use information in the survey data to adjust 

TAC advice up or down are able to self-correct and adapt to low biomass levels thereby avoiding 

further (unchecked) stock depletion, as is evident from Table 25 and Figure 24. While the feedback 

strategies (Iratio, Islope and Itarget) often lead to elevated inter-annual fluctuations in TAC advice, 

this disadvantage is eliminated here thanks to the multi-annual availability of survey estimates – the 

TAC advice is adjusted only once a new survey estimate becomes available.  

 

Table 19 to Table 24 compare medians and 90% probability intervals for average future catch and 

final depletion for six robustness tests:  
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 Table 19 evaluates the effect on management statistics when assuming that natural mortality 

is age-dependent rather than constant for all ages. For this robustness test, the natural 

mortality rate for young conch is well above 1, decreasing to 0.1yr
-1

 at older ages (see Table 

14 and Figure 18). While the final depletions are somewhat lower for this robustness test, all 

MPs (except DCAC) nevertheless satisfy the minimum risk criterion of maintaining the 

spawning biomass above 20% of virgin levels at the 5%-ile.  

 Table 20 shows results when assuming that the conch stock is more depleted (10-30% of K) 

than assumed for the base case OM (30-50% of K). If the “true” depletion is indeed lower 

than expected, both constant catch rules, and indeed the Itarget rule which is partly based on 

DACS, lead to even further stock depletion. Only the Iratio and Islope feedback strategies are 

able to self-correct and result in stock recovery, even at the lower percentile.  

 Table 21 shows projection results when assuming higher levels of under-reporting, poaching  

and/or implementation error (and/or error in the conversion factor when calculating the 50% 

cleaned weight catch from total weight). Not surprisingly, an increase in implementation error 

leads to slightly lower biomass levels. However, all the MPs except DCAC demonstrate 

adequate robustness. 

 Table 22 shows yield/risk results when basing management advice on a survey index that is 

less reliable. While not effecting final depletion, the increase in noise about the data leads to 

slightly less yield in terms of the median average catch for some of the feedback strategies.  

 Table 23 compares results when increasing the frequency of the multi-annual surveys. The 

increase in data improves performance to some extent, but by less than would be hoped. This 

is likely mainly due to the choice of control parameters adopted for these “off-the-shelf” 

rules, combined with multi-annual TACs and the initial assumption for stock size: the base 

case OM assumes biomass to be close to MSY level; under this assumption, the survey data 

generated are unlikely to exhibit any discernable increasing or decreasing trend biomass, but 

rather reflect noise. If annual survey estimates were to become available in future, these “off-

the-shelf” rules would desirably be adjusted and tuned to be able to respond to possible 

decreasing trends in the biomass quickly with annual adjustments to TAC.  

 Table 24 shows projection results when combining robustness tests 2, 3 and 4 (depleted stock 

with high levels of implementation error and noisy data). This final test demonstrates the 

danger of implementing a constant catch strategy. Both DACS and DCAC fail to maintain 

biomass levels at the lower percentile. The Itarget rule also leads to severe biomass depletion, 

indicating that the performance of this rule is very sensitive to the choice of index and catch 

target. On the other hand, the two other feedback strategies (Iratio and Islope) lead to an 

increase in biomass from current low levels (10 to 30% of K) to approximately 25% to 90% 
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of virgin spawning biomass at the end of the projection period. This comes at the cost of less 

catch on average in median terms: 339 and 384 tons compared to the NTAC of 400 tons. 

 Table 25 is the same as Table 24, except that biomass surveys are assumed to be conducted 

every year with TAC advice adjusted accordingly, i.e. annually. These results indicate that, 

for a very depleted stock, additional (annual) biomass estimates can potentially lead to 

improved performance in terms of both yield and risk: note, for example, that the Itarget rule 

shows an increase in mean average catch and lower percentile final depletion from 476 to 504 

tons and 0.01 to 0.18, respectively. 

 

Figure 22 compares yield-risk statistics for the base case operating model and the robustness tests. 

The solid horizontal line indicates the 20% depletion level that acts as the risk limit reference point for 

this study. It is clear that the DCAC strategy (square) fails consistently to reach the biomass limit 

reference point. Three of the five candidates fail to satisfy the risk criterion for robustness test 2: here, 

spawning biomass is much lower than assumed for the base case when applying the DACS, DCAC 

and Itarget rules. However, the two feedback strategies, Iratio and Islope, are able to rebuild spawning 

biomass to reasonably high levels even at this lower percentile.  

 

Error! Reference source not found. plots yield-risk results for the combined robustness test. 

learly, the constant catch and Itarget rules fail to maintain or rebuild biomass and are therefore not 

viable candidates to provide TAC advice. Of the feedback strategies, the more conservative Iratio and 

Islope rules demonstrate adequate robustness throughout the simulation trials, with the Islope rule 

giving the the greatest median yield (384 tons 50% cleaned meat) while still satisfying the risk 

criterion. The advantage of conducting annual biomass surveys is clearly visible in Figure 24: for the 

same biological risk the feedback strategies achieve much higher yields than the constant catch 

strategies indicated by the dashed lines.  

 

3.5.2.4 Discussion and conclusions 

 

The range of uncertainty incorporated in these simulations makes it more difficult to evaluate and 

compare the merits of the different candidate MPs. The challenge is to be able to react to trend 

information while at the same time ignoring the high levels of noise typically associated with the 

biomass index. Once implementation error (both past and future) is incorporated, the effect of the 

control rule is partially obscured. Nevertheless, these initial results show that constant catch type rules 

(DACS and DCAC) are not robust as they cannot self-adjust to signals in the data as the stock 

becomes increasingly depleted. Of the feedback strategies, the Islope and Iratio rules performed best, 

providing measured adjustments to TAC advice in response to signals in the data. The Itarget rule did 
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not perform well given its “off-the-shelf” parameterization. The poor performance is a consequence of 

the construction of the control rules and the choice of control parameters. However, this evaluation is 

preliminary and current projections have been conducted with “off-the-shelf” MPs. Future work 

would entail tuning these control rules to achieve improved yield-risk performance for different data 

availability scenarios. 

 

Based on these preliminary results, the overriding concern is to be able to categorise the stock 

according to the appropriate depletion level. The less information regarding stock status there is, the 

more conservative the rule needs to be: of the five candidates considered, only the most conservative 

rules, Islope and Iratio, were able to rebuild the stock from low biomass levels. Increasing the 

frequency of the surveys did not lead to much improvement in performance when the current stock 

biomass is assumed to be close to MSY level. The value of annual surveys became more evident 

when stock size is very low: for the depleted scenario, the performance of the Itarget rule improved 

greatly with the addition of annual biomass estimates. As evident from Figure 24, for the same level 

of risk, the Itarget MP achieved an average future catch of about 500 tons in median terms compared 

to a constant catch (dashed line) of just over 350 tons (grey arrow in top plot). Conversely, for the 

same median average future catch of approximately 500 tons, the constant catch strategy DACS rule 

led to unacceptably low biomass depletion at the 5%-ile of 0.1 compared to 0.18 achieved by the 

Itarget rule (grey arrow bottom plot). Similarly, the more conservative Islope MP halved the 

biological risk for a median average catch of 400 tons, compared to the constant catch equivalent. 
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TAC calculation using actual data  

Depletion Adjusted Catch Scalar (DACS): 

 

DACS= 488 tons 

(assume current depletion is 0.4) 

2

1

/ ( 2 1 1)
y

y

y y

DACS s y y C

 

where 

(1 (0.5 / )) 0.9s B K , / 0.4B K ,and 

 1 2003y and 2 2012y . 

Depletion Corrected Average Catch (DCAC): 

 

DCAC=899 tons 

(assume current depletion is 0.4) 

2012

1988

/ ( )

yC
DCAC

n MSYL c M
 

where 

25n , 1 / 0.6B K , 0.4MSYL , 

0.4M , and 1c  

Index ratio (Iratio): 

 

Iratio= 289 tons 

2011

2007
2013 2011 2002

1994

1/ 2

1/ 3

y

y

I
TAC TAC

I
 

Index slope (Islope) 

 

Islope=397 tons 

1 (1 )y y yTAC TAC s  

where 

0.4  and 
ys is the slope over the most recent four CPUE 

values.

 
 

Target MP (Itarget):  

 

Itarget= 490 tons 

*

2013 arg
0.5 1

recent

y

t et

I
TAC TAC

I
  

where  

*TAC DACS , 

recentI is the most recent index value,  

arg 12094t etI is the historical average. 

 

Table 17: MP generated TAC for 2013 when applying the five candidate “off-the-shelf” MPs to Jamaican conch 

data.  
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 DACS DCAC Iratio Islope Itarget 

 

/sp sp

nB K
 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

/sp sp

finalB K
 

0.63 

(0.40, 0.97) 

0.36 

(0.01, 0.76) 

0.69 

(0.46, 1.0) 

0.67 

(0.46, 0.99) 

0.60 

(0.34, 0.96) 

/sp sp

n MSYB B
 

1.25 

(0.94, 1.60) 

1.25 

(0.94, 1.60) 

1.25 

(0.94, 1.60) 

1.25 

(0.94, 1.60) 

1.25 

(0.94, 1.60) 

/sp sp

final MSYB B
 

1.95 

(1.21, 3.04) 

1.13 

(0.04, 2.34) 

2.12 

(1.39, 3.19) 

2.08 

(1.39, 3.11) 

1.87 

(1.06, 2.97) 

futureTAC
 

488 899 373 

(294, 458) 

403 

(366, 443) 

526 

(430, 646) 

AAV 0.01 

(0.01, 0.01) 

0.06 

(0.06, 0.06) 

0.04 

(0.03, 0.04) 

0.01 

(0.01, 0.02) 

0.03 

(0.02, 0.04) 

futureC  

(implementation 

error) 

513 

(469, 558) 

943 

(863, 1027) 

387 

(304, 487) 

423 

(371, 480) 

552 

(443, 697) 

 

Table 18: Medians (with 5% and 95%-iles in parenthesis) are shown for performance statistics for the five “off 

the shelf” MPs applied over a 20-year period.  A CV of 20% is assumed for the survey index. A thousand 

simulations were performed to ensure adequate coverage over multiple model parameter ranges. Units, where 

pertinent, are tons. The shaded rows correspond to medians and distributions at the start of the projection period.  
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Robustness test 1: 

Sharply decreasing Ma: 

/aM a  

DACS: 

 

DCAC: 

 

Iratio 

 

Islope 

 

Itarget 

 

/sp sp

nB K
 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

/sp sp

finalB K
 

0.57 

(0.23, 0.94) 

0.33 

(0.03, 0.76) 

0.63 

(0.29, 1.02) 

0.62 

(0.29, 1.0) 

0.55 

(0.19, 0.95) 

futureTAC
 

488 

 

899 

 

360 

(270, 477) 

397 

(358, 441) 

503 

(414, 620) 

futureC  

(implementation error) 

513 

(469, 560) 

944 

(864, 1030) 

374 

(281, 496) 

418 

(362, 475) 

528 

(425, 658) 

 

Table 19 : Comparison of performance of MPs to age-dependent natural mortality.  

 

 

Robustness test 2: 

Low depletion: 

/ [0.1,0.3]B K U  

DACS: 

 

DCAC: 

 

Iratio 

 

Islope 

 

Itarget 

 

/sp sp

nB K
 

0.2 

(0.11, 0.29) 

0.2 

(0.11, 0.29) 

0.2 

(0.11, 0.29) 

0.2 

(0.11, 0.29) 

0.2 

(0.11, 0.29) 

/sp sp

finalB K
 

0.46 

(0.01, 0.86) 

0.01 

(0.0, 0.51) 

0.59 

(0.31, 0.94) 

0.54 

(0.26, 0.90) 

0.46 

(0.01, 0.87) 

futureTAC
 

488 899 351 

(258, 423) 

390 

(333, 438) 

498 

(344, 651) 

futureC  

(implementation error) 

513 

(469, 558) 

943 

(863, 1027) 

365 

(266, 450) 

409 

(343, 475) 

507 

(412, 641) 

 

Table 20: Comparison of performance of MPs to the misspecification of current depletion. For these simulations 

the “true” current depletion is lower than assumed for the base case and falls in the range 0.1 to 0.3 of the pre-

exploitation biomass.  
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Robustness test 3: 

Increased under-reporting: 

[0,0.2]C U  

DACS: 

 

DCAC: 

 

Iratio 

 

Islope 

 

Itarget 

 

/sp sp

nB K
 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

/sp sp

finalB K
 

0.62 

(0.39, 0.96) 

0.35 

(0.01, 0.74) 

0.68 

(0.46, 1.0) 

0.67 

(0.46, 0.99) 

0.60 

(0.34, 0.95) 

futureTAC
 

488 899 373 

(293, 459) 

403 

(366, 443) 

525 

(430, 646) 

futureC  

(implementation error) 

539 

(477, 606) 

992 

(877, 1115) 

409 

(317, 514) 

445 

(381, 521) 

579 

(462, 749) 

 

Table 21: Comparison of performance of MPs to increased levels of under-reporting of catches.  

 

 

Robustness test 4: 

Noisy survey: CV=0.4 

DACS: 

 

DCAC: 

 

Iratio 

 

Islope 

 

Itarget 

 

/sp sp

nB K
 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

/sp sp

finalB K
 

0.63 

(0.40, 0.97) 

0.36 

(0.01, 0.76) 

0.69 

(0.46, 1.0) 

0.67 

(0.46, 1.0) 

0.61 

(0.36, 0.97) 

futureTAC
 

488 899 363 

(271, 483) 

400 

(353, 444) 

505 

(412, 641) 

futureC  

(implementation error) 

513 

(469, 558) 

943 

(863, 1027) 

377 

(282, 502) 

418 

(360, 482) 

528 

(426, 679) 

 

Table 22: Comparison of performance of MPs to increased levels of noise in the survey biomass index.  
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Robustness test 5: 

More data: 

Annual survey  

DACS: 

 

DCAC: 

 

Iratio 

 

Islope 

 

Itarget 

 

/sp sp

nB K
 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

0.4 

(0.31, 0.49) 

/sp sp

finalB K
 

0.63 

(0.40, 0.97) 

0.36 

(0.01, 0.76) 

0.68 

(0.46, 1.0) 

0.67 

(0.45, 1.0) 

0.60 

(0.39, 0.92) 

futureTAC
 

488 899 376 

(291, 517) 

417 

(384, 452) 

533 

(464, 632) 

futureC  

(implementation error) 

513 

(469, 558) 

943 

(863, 1027) 

400 

(299, 542) 

438 

(388, 494) 

562 

(475, 678) 

 

Table 23: Comparison of performance of MPs to an increased frequency of surveys. While the survey biomass 

index is updated every year, the TAC advice is changed every four years.  

 

 

Combined robustness  

tests 2+3+4: 

 

DACS: 

 

DCAC: 

 

Iratio 

 

Islope 

 

Itarget 

 

/sp sp

nB K
 

0.2 

(0.11, 0.29) 

0.2 

(0.11, 0.29) 

0.2 

(0.11, 0.29) 

0.2 

(0.11, 0.29) 

0.2 

(0.11, 0.29) 

/sp sp

finalB K
 

0.45 

(0.01, 0.86) 

0.01 

(0.0, 0.5) 

0.59 

(0.29 0.94) 

0.54 

(0.25, 0.91) 

0.47 

(0.01, 0.88) 

futureTAC
 

488 899 339 

(258, 441) 

384 

(324, 437) 

476 

(348, 624) 

futureC
 

(implementation error) 

539 

(477, 606) 

992 

(877, 1115) 

371 

(271, 488) 

423 

(346, 510) 

520 

(378, 706) 

 

Table 24: Comparison of performance of MPs for a combination of robustness tests: the OM assumes that the 

“true” depletion falls within in a range of 0.1 to 0.3 of virgin spawning biomass. In addition, the under-

reporting/poaching and non-compliance is more severe than assumed in the base case OM with the “true” 

catches now higher than before. Lastly, future survey biomass estimates are less reliable (more noisy) than for 

the base case simulations. 
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Combined robustness  

tests 2+3+4+5: 

 

DACS: 

 

DCAC: 

 

Iratio 

 

Islope 

 

Itarget 

 

/sp sp

nB K
 

0.2 

(0.11, 0.29) 

0.2 

(0.11, 0.29) 

0.2 

(0.11, 0.29) 

0.2 

(0.11, 0.29) 

0.2 

(0.11, 0.29) 

/sp sp

finalB K
 

0.45 

(0.01, 0.86) 

0.01 

(0.0, 0.5) 

0.52 

(0.28, 0.83) 

0.52 

(0.27, 0.86) 

0.43 

(0.18, 0.75) 

futureTAC
 

488 899 371 

(196, 721) 

410 

(321, 505) 

504 

(375, 691) 

AAV 0.01 0.06 0.13 

(0.11, 0.14) 

0.06 

(0.04, 0.08) 

0.07 

(0.04, 0.09) 

futureC
 

(implementation error) 

539 

(477, 606) 

992 

(877, 1115) 

411 

(215, 810) 

450 

(348, 579) 

558 

(409, 795) 

 

Table 25: Results for circumstances as described for Table 24, except, that in addition future survey biomass 

estimates become available annually and TAC advice is provided at this same shorter interval.  
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Figure 20: Plots of the projections under alternative MPs for the base case OM. The left-hand column of plots 

show spawning biomass depletion, the middle column shows the projected TACs under different harvesting 

strategies, while the right-hand column shows the “true” past and projected catches when incorporating 

implementation error. The trajectories correspond to the first thirty simulations of the one thousand performed. 
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Figure 21: Comparison of management statistics under alternative MPs for the base case OM. The top two plots 

compare spawning biomass distributions for the final year of the projection period, i.e. 2032 when projecting 

under alternative MPs. The inter-annual variation in TAC was restricted to a maximum of 15% for the three 

feedback rules.   
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Figure 22: Median average yield over the 20-year projection period versus risk of stock depletion (at the 5%-ile) 

under alternative MPs for the base case OM (top left) and various robustness tests.  
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Figure 23: The same as Figure 22, but here comparing yield-risk trade-offs under alternative MPs for the 

combined robustness test.  
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Figure 24: The same as for Figure 23, but here assuming that biomass surveys will be conducted every year in 

future, with annual adjustments to TAC advice. The dashed lines correspond to increasing biological risk 

associated with alternative constant catch strategies ranging from 300 to 500 tons. The grey arrows indicate the 

difference in potential yield under the constant catch and feedback MPs (top plot) and the increased risk 

associated with the non-feedback MPs for the same average yield (bottom plot). 
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Acronyms 

ABC  Acceptable Biological Catch 

ACL  Annual Catch Limit 

ADAPT-VPA Adaptive framework - Virtual Population Analysis 

ADMB  Automatic Differentiation Model Builder 

AFMA  Australian Fisheries Management Agency 

AIM  An Index Method 

ALK  Age-Length Key 

ASPM  Age-Structured Production Model 

BSAI  Bering Sea and Aleutian Islands 

BSP  Bayesian Surplus Production 

ASPIC  A Surplus-Production model Incorporating Covariates 

CASAL C++ Algorithmic Stock Assessment Laboratory 

CAY  Current Annual Yield 

CCAMLR Commission for the Conservation of Antarctic Marine Living Resources 

CCSBT  Commission for the Conservation of Southern Bluefin Tuna 

CPUE  Catch Per Unit Effort 

CSA  Collie-Sissenwine Analysis 

DB-SRA Depletion-Based Stock Reduction Analysis 

DCAC  Depletion Corrected Average Catch 

EEZ  Exclusive Economic Zone 

ETBF  Eastern Tuna and Billfish Fishery 

FAO  Fisheries and Agriculture Organisation of the United Nations 

FMA  Fishery Management Areas 

FMP  Fisheries Management Plan 

HCR  Harvest Control Rule 

HSP  Harvest Strategy Policy 

ICCAT  International Commission for the Conservation of Atlantic Tuna.  

ICES   International Council for the Exploration of the Sea 

IWC  International Whaling Commission 

LRSG  Lagged Recruitment, Survival and Growth 

LRP  Limit Reference Point 

MCY  Maximum Constant Yield 

MEY  Maximum Economic Yield 

MSA  Magnuson-Stevens Fishery Conservation and Management Act 

MSRA  Magnuson-Stevens Reauthorisation Act 

MP  Management Procedure  
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MSE  Management Strategy Evaluation 

MSY  Maximum Sustainable Yield 

NOAA  National Oceanic and Atmospheric Administration (USA) 

NPFMC North Pacific Fisheries Management Council 

OFL  OverFishing Limit 

PFMC  Pacific Fisheries Management Council 

PSA  Productivity and Susceptibility Analysis 

QMA   Quota Management Area 

QMS   Quota Management System 

RBC  Recommended Biological Catch 

RVA  Rapid Visual Assessment 

SAM  State-Space Assessment Model 

SCAA  Statistical Catch At Age 

SESSF  Southern and Eastern Scalefish and Shark Fishery 

SIR  Sampling Importance Resampling 

SISAM  Strategic Initiative on Stock Assessment Methods 

SS  Stock Synthesis 

SSC  Scientific and Statistical Committee 

TAC   Total Allowable Catch 

TACC   Total Allowable Commercial Catch 

TAE  Total Annual Effort 

TRC  Target Reference Point 

UNCLOS United Nations Convention on the Law of the Sea 

VPA  Virtual population Analysis 

WSSD  World Summit on Sustainable Development 

XSA   Extended Survivor Analysis 
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Appendix A: Categorisation of stocks  

A.1 United States of America  

 

In 1976, the Magnuson-Stevens Fishery Conservation and Management Act (MSA) created eight 

regional fisheries management councils to address overfishing of marine stocks in the various regions 

comprising the EEZ of the USA. The 2006 Magnuson-Stevens Reauthorisation Act (MSRA) gave a 

mandate to regional councils to, inter alia, develop research priorities in conjunction with a Scientific 

and Statistical Committee (SSC) to set annual catch limits (ACLs) for all stocks or stock complexes 

based on the best available science and to develop and implement rebuilding plans, with an increased 

emphasis on data-poor stocks (Seagraves and Collins 2012). 

 

In the bid to promote sustainable harvesting of exploited stocks, a more structured approach to 

management has been adopted by some regional Councils: fish stocks are categorised into categories, 

or tiers, according to their information type and availability, from data-rich to data-poor. Catch advice 

is then based on harvest control rules (HCRs) that are defined for each category, or tier, with HCRs 

becoming increasingly precautionary with increasing tier level.  

 

Management advice takes the form of Annual catch Limits (ACLs) that are more 

precautionary/conservative as data and knowledge decrease from one category, or tier, to the other, 

thereby preventing overfishing and assisting stock recovery as required by the statutory requirements 

established under the MSRA of 2006. While the MSRA does not define ACLs, the relationship 

between ACLs, Overfishing Limits (OFLs) and Acceptable Biological Catch (ABCs) are such that 

OFL≥ABC≥ACL. Therefore, in order to determine the ACL, the first step is to determine the OFL, 

after which the OFL is adjusted downwards to obtain an ABC to account for scientific uncertainty, 

which then acts an upper bound for the ACL (Dick and MacCall 2010). 

 

A.1.1 The North Pacific Fishery Management Council (NPFMC) 

 

The North Pacific Fishery Management Council (NPFMC) is one of eight regional fisheries councils 

in the USA. The Council has primary responsibility for the management of Gulf of Alaska and Bering 

Sea/Aleutian Island groundfish and Bering Sea/Aleutian Island crab stocks.  

 

Stocks, or stock complexes, are assigned to tiers according to the type and amount of information 

available. Catch advice is based on tier-based harvest control rules (HCRs) that incorporate MSY 

reference points and/or proxies and buffers to account for scientific uncertainty. Target and limit 
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reference points are defined in terms of an acceptable biological catch (ABC) and an overfishing limit 

(OFL) with a buffer between two to make allowance for scientific uncertainty (see Figure 4). For 

stocks estimated to be at, or above,
MSYB  the overfishing limit is set equal to 

MSYF (or its proxy ).  

When the stock biomass is below
MSYB , the overfishing limit decreases from 

MSYF
 
(or proxy value) 

to zero as a function of the level of depletion. The acceptable biological catch (ABC) is defined in 

terms of a more conservation reference point at some percentage below 
 
F

MSY
(or the proxy for 

Tier 2 and 3 rules). 

 

A precautionary approach is followed in which the annual catch limit (ACL) for each stock is taken to 

be equal to the ABC. The total allowable catch (TAC) is set at, or below, the ABC to take various 

sources of uncertainty into account. As a consequence of the long-term application of conservative 

annual catch limits (ACLs), none of the stocks in the Bering Sea and Aleutian Islands (BSAI) is 

estimated to be overfished or subject to overfishing (DiCosimo et al. 2010).   

 

HCRs corresponding to the top three tiers are based on the most recent biomass estimates provided by 

quantitative assessments to determine the ABC and OFL. In terms of the HCR, the fishing mortality 

rate is maintained at a constant level when the stock is estimated to be above the target biomass. Once 

stock biomass drops below the target reference point, fishing mortality is decreased linearly. If the 

stock is depleted beyond some threshold level (expressed as a percentage of the target biomass), the 

fishing mortality is set to zero. Biological reference points cannot be calculated for higher tier (data-

poor) stocks. In the absence of quantitative information to indicate otherwise, the HCR therefore 

maintains fishing mortality at some conservative level (Grabacki 2008). 

 

The NPFMC introduced a tier system in 1999 to categorise North Pacific groundfish into six tiers 

(NPFMC 2014). 

Tier 1. Stocks with quantitative assessments and estimates (with distributions) of MSY  

reference points:  

Reserved for data-rich stocks with sufficient data from which to estimate the pre-

exploitation biomass and obtain reliable estimates of and reference points 

and distributions to reflect uncertainty.  

Tier 2. Stocks with quantitative assessments and estimates of MSY reference points: 

This category includes data-rich stocks with reliable estimates of biomass, B, and 

management reference points, MSYB and MSYF , but no probability density function for 

. Instead, the OFL and ABC are defined in terms of proxy values 
 
and 

. 

35%F

40%F

MSYB MSYF

MSYF 35%F

40%F
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Tier 3. Stocks with quantitative assessments and proxy MSY reference points: 

Stocks in this category lack adequate information to obtain reliable estimates of MSY 

related management quantities due to uncertainty regarding the spawner-recruitment 

relationship. Instead, proxy values are used: the OFL and ABC are based on
 
and 

respectively and a proxy value, , is used instead of . 

Tier 4. Stocks with biomass estimates but lacking growth/fecundity data: 

This tier is reserved for stocks for which recruitment cannot be estimated. A simple 

HCR based on proxy reference points, and is implemented.  

Tier 5. Data-poor stocks without estimates of stock status: 

This tier corresponds to stocks for which the pre-exploitation biomass cannot be 

estimated. In the absence more appropriate fishing mortality reference points,  is 

set equal to the natural mortality rate, with the  25% below the overfishing rate, 

or lower.  

Tier 6. Data-poor or catch-only stocks:  

This tier is reserved for stocks with a reliable catch time-series only. In the absence of 

biomass and reference points estimates, the OFL is set equal to the average historic 

catch, with the ABC 25% below that, or lower. Alternative approaches are suggested 

for stocks for which the catch is not a reliable indicator of sustainable yield.  

 

Crab stocks are categorised into five tiers. 

 

Tier 1. Stocks with quantitative assessments and a reliable stock-recruitment relationship and 

estimates of and . 

Tier 2. Similar to tier 1 but allowing for more uncertainty about estimates. 

Tier 3. Stocks with life history information and quantitative assessments but no MSY 

estimates. 

Tier 4. Stocks with estimates of biomass but limited life history data. 

Tier 5. Stocks with reliable catch data but lacking a biomass estimate. 

 

 

 

 

 

35%F

40%F 40%B MSYB

35%F 40%F

OFLF

ABCF

MSYB MSYF
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A.1.2 The Pacific Fishery Management Council (PFMC) 

 

The Pacific Fisheries Management Council’s (PFMC’s) Groundfish Management Plan (FMP) 

includes more than 90 species that are organised into three main categories: data-rich, data-moderate 

and data-poor according to the data available. The categories are divided into subcategories based on 

the methods used to estimate the OFLs. These categories and subcategories reflect the extent of 

scientific uncertainty in terms of data availability, suitable methods of analysis and robustness of 

assessment results. The extent of uncertainty is reflected in the size of the uncertainty buffer between 

the ABCs and the OFLs (see Figure A.1.1 and Figure A.1.2 below). 

 

The ABCs for stocks managed under the Coastal Pelagic Species and Groundfish FMPs are defined in 

terms of two parameters:  that characterises the level of scientific uncertainty as evaluated by the 

Scientific and Statistical Committee (SSC), and , the level of risk as evaluated by the Management 

Council. The application of arbitrary uncertainty buffers between the OFL and the ABC, such as 

ABC=0.75*OFL, are thereby avoided. Increasing values of are assigned to data-poor stocks 

characterised by greater uncertainty. To improve specification of scientific uncertainty, the SSC is 

considering setting stock-specific s for data-rich stocks and using an MP approach (or MSE) to 

evaluate  for data-poor groundfish stocks (Seagraves and Collins 2012). In addition, the long-term 

trade-offs corresponding to different values of , the probability that overfishing, need to be 

investigated. 

 

Particular attention is given to data-poor stocks: estimates of sustainable yield have been obtained for 

50 data-poor stocks in the Pacific Coast Groundfish Management Plan (Dick and MacCall 2010).  

 

Species are categorised according to the amount of data informing the HCR. Three categories are 

specified:  

Category 1. Data-rich: 

The OFL is based on MSYF (or proxy) estimated by an age- or length based assessment model. 

The ABC is based on the P* buffer. 

1a) An age/length based model  fitted to reliable age/length composition data and fishery-

dependent trend data. 

1b) Same as 1a, and survey trend data. 

1c) An age/length based model with reliable estimation of the stock-recruitment relationship. 

*P

*P
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Figure A.1.1: The Pacific Fishery management Council (PFMC) 40-10 harvest control rule for groundfish.  

 

  

Figure A.1.2: The revised control rule to establish a buffer between the OFL and ABC (Carmichael and Fenske 

2011).  
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Category 2. Data-moderate: 

The OFL is derived from model output or natural mortality. ABCs are derived from OFLs by 

applying a buffer of 0.25 and assuming a value for of 0.72. 

2a) Natural mortality and a survey biomass estimate. 

2b) An age-aggregate population model  based on historical catches and fishery trend 

information.  

2c) An age-aggregate population model fitted to historical catches and survey trend 

information. 

2d) A full age-structured assessment, with high uncertainty (e.g. assessment results are highly 

sensitive to model and data assumptions). 

 

Category 3. Data-poor:  

OFLs are derived from historical catch time series. ABCs are derived from OFLs by applying 

a buffer of 0.5 and assuming a value for of 1.44. 

3a) No reliable catch data and no basis for estimating OFL. 

3b) Reliable catch time-series over recent years. OFL is set equal to an average catch. 

3c) Reliable catch time-series during the period of fishery development, as well as some 

information on natural mortality. A catch-only method, Depletion-Corrected Average Catch 

(DCAC), is used to obtain OFLs. 

3d) Reliable catch time-series and qualitative information of biological parameters such as 

natural mortality rate and maturity. The default method is Depletion-Based Stock Reduction 

Analysis (DB-SRA). 

 

 

 

A.2 Europe (ICES) 

 

ICES recognise six main categories according to the availability of biological and fishery data and 

whether stocks are (have been) regularly assessed quantitatively and estimates of biomass, fishing 

effort and/or management reference points are available to serve as basis for catch advice (ICES 

2013b). Stocks with a full complement of data with which to conduct age/length based assessments 

are termed data-rich and fall in category 1. The stocks that fall in the remaining five categories are 

considered data-limited (at least to some extent) and do not benefit from regular quantitative 

assessments. However, most data-limited stocks have at least some information available in addition 

to the historical catch series. To aid decision making, these data-limited stocks are grouped according 
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to the methods that can be applied to the data that are available, with stock uncertainty increasing with 

category number. 

 

The current ICES approach to fisheries management is anchored on the concept of achieving 

maximum sustainable yield. However, the EU’s implementation of the WSSD (UN 2002) call for the 

recovery of depleted stocks to levels that produce MSY by 2015 has differed slightly from approaches 

followed in other parts of the world. Based on the assumption that stock recovery must theoretically 

occur at a fishing mortality of
MSYF , ICES adopted a MSY framework in 2010 to reduce of fishing 

mortality to
MSYF  by 2015 where possible (ICES 2013b). The delay in achieving the WSSD objective 

is partly due to the European Commission who requested a gradual reduction of fishing effort to 

levels corresponding to 
MSYF  (EC 2006) for socio-economic reasons.  

 

For data-rich stocks that undergo regular assessments (category 1 stocks), ICES calculates the TAC to 

achieve the desired fishing mortality rate of
MSYF , as per the HCR implemented for the stock. The 

MSY management approach is also based on a biomass reference point: 
TRIGGERB is a lower bound for 

spawning biomass below which fishing mortality must be reduced to allow the stock to recover to a 

level of abundance which would maximise the sustainable yield (see Figure 6). In cases where a range 

of estimates of stock size associated MSY is not available to yield a plausible lower bound, the lower 

bound under the precautionary approach, 
PAB , is used in lieu of 

TRIGGERB . For fish stocks that are not 

considered data-rich (i.e. stock that fall into categories 2 to 6), an increasingly precautionary margin is 

applied with decreasing knowledge about stock status, with fishing mortality rates set well below 

MSYF . When stock status is unknown, a precautionary buffer of a 20% reduction is applied, unless 

expert judgement shows that there is evidence of stock recovery and no sign of recruitment 

overfishing. 

 

 

Category 1: Data-rich stocks with quantitative assessments 

 

This category includes all stocks that undergo full quantitative assessments with forecasts. 

ICES define two sub-categories: one for longer-lived species with several year classes 

contributing to the fishery and the other for short-lived species. Catch advice is based on 

estimates of current biomass in relation to the level that produces maximum sustainable yield 

(MSY), obtained via full quantitative assessments of the stock – see sections 1.4.5 to 1.4.8 for 

different age and length models typically applied to data-rich stocks. A precautionary 

approach is followed by incorporating PA limit reference points.  
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Category 2:  Stocks with quantitative assessments, used qualitatively  

 

This category includes stocks for which quantitative assessments are available. However, 

assessments are considered as indicative of trends in fishing mortality, recruitment, biomass 

and future catches.  

 

Category 3: Stocks with reliable time-series data 

  

This category includes stocks for which one or more relative index of abundance is available 

to track trends in stock metrics such as recruitment and biomass (see time-series methods in 

section 1.4.2). Such a time-series can be either a direct or indirect index of abundance, e.g. 

from survey, CPUE or mean length of catch. Catch advice is typically based on a harvest 

control rule (HCR) that adjusts the status quo catch up or down if the average of the most 

recent index values is above or below some historical average. 

 

Category 4: Stocks with reliable catch data  

 

This category includes stocks for which an adequate catch time-series is available. Assuming 

that the historic catch series is an indicator of trend in biomass, the depletion corrected 

average catch (DCAC – see catch-only methods in section 1.4.1) is computed to serve as a 

basis for catch advice.  

 

Category 5: Data-poor stocks with landings data only 

 

A Productivity and Susceptibility Analysis (PSA) risk assessment is currently being 

developed by ICES to manage data-limited stocks. In the absence of a PSA, ICES propose 

some rudimentary set of rules on which to base catch advice (e.g. applying the Precautionary 

Buffer to the previous year’s catch). 

 

Category 6: Stocks with negligible landings data 

  

This category includes extremely data-limited stocks for which landings are negligible. 

Reasons for negligible landings data may be include low stock abundance, discarding of 

species due to low economic value, or incidental catches (bycatch) in fisheries that target 
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other species. For category 6 stocks, for which little information is available, catch advice is 

based on the same criteria as apply to category 5 stocks. 

 

 

A.3 Australia 

 
To manage the Australian Commonwealth fisheries sustainably and economically, and rebuild 

depleted fish stocks, a formal harvest strategy policy (HSP) was adopted in 2007 (DAFF 2007). It is 

based on the harvest strategy framework developed for Southern and Eastern Scalefish and Shark 

Fishery (SESSF) which was introduced in 2005 with the aim to generate precautionary management 

advice for stocks based on a set of tier-based HCRs.  

 

The SESSF is a multi-species fishery comprising over 30 commercial stocks that fall under the quota 

management system of the Australian Fisheries Management Authority (AFMA). To ensure the 

success of this management framework, a partnership approach was adopted involving key 

stakeholders (fishers, non-governmental organisations, scientists and managers) in the management 

process (Smith et al. 2008). This framework includes an agreed process for fishery monitoring, stock 

assessment, and decision rules for translating stock assessment outputs into clear advice on the 

Recommended Biological Catch (RBC) for each stock managed under the Quota Management 

System. A tier system of assessment methods and associated control rules is used with the highest 

tiers corresponding to detailed integrated assessments for data-rich stocks, whereas the lowest tiers 

correspond to harvest control rules based on limited data. A management strategy evaluation (MSE) 

approach was used to evaluate the performance of the SESSF harvest strategy framework, with HCRs 

within each tier simulation tested to demonstrate robustness (Wayte 2009). 

 

The policy is defined in terms of MSY reference points: a target of maximum sustainable yield and a 

limit of half the biomass that would produce MSY is incorporated explicitly. In addition, acceptable 

risk levels are defined for stocks that fall below their limit reference point (Smith et al. 2013). 

  

A precautionary approach to management is incorporated by specifying target and limit reference 

points: overfishing is defined in terms of a maximum fishing mortality rate, LIMF , while optimum 

fishing pressure is defined in terms of a target fishing mortality rate, TARGF  . Target fishing mortality 

rates decrease with increasing Tier levels, in the light of the increasing uncertainty (Smith et al. 2008).   
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In terms of this framework, a conservative biomass target is chosen which is based on maximum 

economic yield, which is assumed to lie 20% above the biomass that would support maximum 

sustainable yield ( 1.2MEY MSYB B ), with an associated limit reference point set at half that biomass  

( 0.5LIM MSYB B ). A maximum sustainable yield proxy is defined for
MSYB , assumed to occur at 40% of the 

unexploited spawning biomass (termed
40 MSYB B ), with associated proxy values for the target and limit 

reference points are given by 
48 MEYB B and 

20 LIMB B respectively. Once the stock biomass is estimated to 

fall below
20B , the HCR sets the targeted catch to zero (see  

Figure 5). Using the same terminology, the limit, MSY and target fishing mortality reference points 

correspond to
20F ,

40F and 
48F respectively, where 

40F is the fishing mortality rate that would maintain 

the stock biomass at MSY level, or
40B (Smith et al. 2013).  

 

Each stock is assigned to one of four Tier levels depending on the amount and quality of data 

available to assess the stock. Stocks that fall into Tier 1 undergo robust quantitative stock 

assessments, while Tier 2 stocks also undergo full assessments, but with increased levels of 

uncertainty. Management advice for Tier 3 stocks is based on catch curve analysis, while Tier 4 

advice is based on trends in catch rates (CPUE).  A summary of the 2009 SESSF harvest strategy 

framework from AFMA (2009) is given below.  

 

Tier 1 and 2: Stocks with robust quantitative assessments 

 

Typically reserved for data-rich stocks where all available data are used in an integrated 

assessment (see section 1.4.8) to provide estimates of current relative and absolute biomass. 

These biomass estimates are used in the HCR to calculate the target fishing mortality from 

which the RBC is calculated. Also termed as the 20:35:F48 rule, the target fishing mortality is 

calculated as (see Figure A.3.1 below): 

 

 if   

20
48

35 20

( )CUR
TARG

B B
F F

B B
  if 20 35CURB B B  

    if  

 

The RBC for Tier 1 stocks is calculated by applying the target fishing mortality, , to the 

current biomass to calculate the catch (including discards) for the next year, using the agreed 

base case assessment model. 

0TARGF 20CURB B

48TARGF F 35CURB B

TARGF
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Figure A.3.1: The current SESSF Tier 1 harvest strategy is indicated by the solid black line. The biomass limit, 

inflection and target reference points for this Tier are B20, B35 and B48. The dashed lines correspond to 

alternative Tier 1 rules used earlier by the SESSF. The current 20:35:F48 rule is derived from these earlier rules 

(Haddon 2012). 

 

Tier 2: Stocks with less robust quantitative assessments 

 

This tier includes stocks with less robust quantitative assessments and more uncertainty about 

biomass estimates. Reference points for Tier 2 stocks are currently the same as for Tier 1. 

Increased uncertainty levels could be taken into account by discounting of the RBC. 

However, at present there are no stocks falling into this Tier and this rule is therefore not 

currently applied. 

 

Tier 3: Stocks with no quantitative assessment but with estimates of fishing mortality. 

 

The Tier 3 HCR applies to stocks with robust estimates of natural mortality rate, M, and 

fishing mortality, F, but no estimates of current biomass. Catch/length composition data are 

used in a yield-per-recruit analysis to determine the fishing mortality rates that will reduce the 

stock biomass to 20%, 40% and 48% of the pre-exploitation level.  
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The fishing mortality corresponding to the RBC, , is given by the current fishing 

mortality in relation to the  and reference points: 

 if   

20
48

20 40

( )CUR
RBC

F F
F F

F F
  if  

    if  

 

The RBC adjusts the current catch (
CURC ) up or down according to the ratio of the intended 

and current exploitation rates: 

 

 

 

Figure A.3.2: The SESSF Tier 3 rule applied to assessments for which an estimate of current fishing mortality, 

FCUR, is available.  The fishing mortality limit, MSY and target reference points for this Tier are F20, F40 and 

B48. 
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Tier 4: Stocks with no quantitative assessments but with reliable catch rate data  

 

The Tier 4 HCR applies to stocks with the least amount of information about stock status. 

This rule is used when no reliable information on current biomass or fishing mortality rate is 

available, but information about current catch levels and catch rates.  No formal assessments 

are conducted and catch-per-unit-effort (CPUE) data are used directly in an empirical HCR. 

CPUE reference points are used as proxies for limit and target reference points,  and 

. The RBC is given by: 

 

 
 

 

where  

is the maximum allowable catch, 

is the target catch derived from the historical period, 

is a recent average CPUE,   

is the limit reference point, CPUE20, below which the recommended catch is zero, 

and 

 is the target reference point, CPUE48, above which the recommended catch is set 

to . 

  

The SESSF framework is precautionary between tiers: the increase in uncertainty about stock status 

that is associated with a lower Tier level would correspond to a decrease in RBC to reflect the level of 

uncertainty. The discount factor for Tier 3 and 4 stocks are 5% and 15%:  

 

Tier 3:  

Tier 4:  

 

The HCRs for all tiers are also subject to TAC change limiting rules: the “small change limiting rule” 

requires that the TAC for the next fishing year is left unchanged if the recommended TAC is within 

10% (or 50 tons) of the TAC for the previous fishing season. The corresponding “large change 

limiting rule” puts a limit of 50% inter-annual change in TAC between fishing seasons, unless there is 

significant risk of resource depletion. 

  

LIMB

TARGB

*

maxmin , max 0, LIM

TARG LIM

CPUE CPUE
RBC C C

CPUE CPUE

maxC

*C

CPUE

LIMCPUE

TARGCPUE

maxC

0.95DISCRBC RBC

0.85DISCRBC RBC
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Appendix B: Operating model  

 

An age-structured production model (ASPM) is used to model the resource dynamics of the 

populations considered in the paper. Fishing is assumed to be continuous throughout the year, so that 

the population dynamics are described by the equations: 

 

1, min 1y a yN R  (B.1) 

 

, ,( )

1, 1 , ,
a y a y y aM S F Z

y a y a y aN N e N e         for 
min 2a a m  (B.2) 

   

1 , 1 ,( ) ( )

1, , 1 ,
m y m y m y m yM S F M S F

y m y m y mN N e N e  (B.3) 

 

where  

,y aN is the number of fish of age a at the start of year y, 

aM denotes the natural mortality rate for fish of age a (for the analyses of this paper age-

independence is assumed), 

,y aS  is the age-specific selectivity for year y and set to 1 for the age at which there is full 

selectivity, 

 yF  is the fishing mortality for year y, 

 m   is the maximum age considered (taken to be a plus-group),  

 mina  is the minimum age considered, and 

 y denotes the year, with the first year considered being 1y . 

 

The total number of fish caught of age a  in year y is given by the Baranov equation: 

,,

, ,

,

(1 )y aZy a y

y a y a

y a

S F
C N e

Z
 (B.4)  

where , ,y a a y a yZ M S F  is the total mortality for fish of age a in year y.  

 

The corresponding total catch by mass for each year is given by: 

min

, 1/2 ,

m

y y a y a

a a

C w C  (B.5) 

where , 1/2y aw  denote the mid-year weights-at-age of fish caught in year y. 
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Stock-recruitment relationship: 

 

The number of recruits at the start of year y (for y>1) is related to the spawning stock size by a 

Beverton-Holt stock-recruitment relationship: 

2 /2min

min

y R

sp

y a

y sp

y a

B
R e

B
   (B.6) 

  

where 

  
  and  are spawning biomass-recruitment parameters, 

 
2~ (0, )y RN  reflect fluctuations about the expected recruitment for year y,  

 R  
is the standard deviation of the log-residuals about the stock-recruitment relationship, and 

 min

sp

y aB  is the spawning biomass at the start of year miny a , given that: 

 
,

min

m
sp

y a a y a

a a

B f w N    (B.7) 

          

where aw  is the begin-year mass of fish of age a (spawning is assumed to take place at the start of the 

year) and af  is the proportion of fish of age a that are mature. 

 

In order to work with estimable parameters that are more meaningful biologically, the stock-

recruitment relationship is re-parameterised in terms of the pre-exploitation equilibrium spawning 

biomass, 
spK , and the “steepness” of the stock-recruitment relationship, h (recruitment at 

0.2sp spB K  as a fraction of recruitment at 
sp spB K ): 

 

4

5 1

Kh R

h           (B.8)
  

and 

(1 )

5 1

spK h

h  (B.9)
 

where the pristine equilibrium recruitment KR  is given by 

1

'1 ' min
'' min

( )1
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0 0

min 1
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Biomass: 

   

The model estimate of the exploitable (“available” to the fishing fleet) component of biomass is given 

by: 

exp

, , ,

min

m

y y a y a y a

a a

B w S N

          

for begin-year biomass, and (B.11) 

, /2exp

1/2 , 1/2 , ,

min

y a

m
Z

y y a y a y a

a a

B w S N e      for mid-year biomass (B.12) 

 

where ,y aw denote the begin-year weights-at-age of fish caught in year y, and , 1/2y aw are the mid-year 

weights-at-age. 

 

The model estimate of the survey biomass is given by   

, ,

min

m
i i

y y a a y a

a a

B w S N   (B.13) 

 

where ,y aw denote the population weights-at-age for each year, and 

      
i

aS  is the fishing selectivity corresponding to survey index i. 

 

It is usual to assume that the resource is at the deterministic equilibrium that corresponds to an 

absence of harvesting at the start of the initial year (
1

sp spB K ). The age-structure of
1

spB  is taken 

here to be that corresponding to the equilibrium with no fishing mortality. 

 

 

B.1 Model parameters 

 

B.1.1 Natural mortality rate: 

 

A general natural mortality function is adopted to allow for decreasing M as age increases, viz.: 

 /aM a  

The base case operating model for both South African panga and Jamaican conch assumes a constant 

mortality rate over all ages (i.e. 0 ). However, a decreasing natural mortality function with high 
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mortality rates typically associated with juvenile fish is adopted for some robustness trials for 

Jamaican conch (i.e. 0 ).  

 

 

B.1.2 Fishing selectivity:  

 

The expectation for fishing selectivity is assumed to be time-invariant with a logistic form: 

 
50

1

1 exp( ( ) / )
aS

a a
 

 

Log-normally distributed variability about these values is taken to be correlated across both ages and 

years, such that: 

2
, /2

,
y a

y a aS S e   (B.14)      

where  

min

2

1, ~ (0, )a N  is the log-residual for the first year and minimum age,
 

2

, , 1 ,1y a y a y a  is the log-residual for year y and year a, which is generated for ages 

a=amin+1 to m and years y, 

min min min

2

, 1, ,1y a y a y a  is the residual for the minimum age amin and year y,
 

2

, ~ (0, )y a N , 

 is the standard deviation of the log-residuals ( 0.4  is used here), and 

 is the serial correlation coefficient ( 0.5  is assumed for these calculations). 

  

B.1.3 Weight-at-age:  

 

For the South African panga stock, the length (l) and mass (w) of a fish at age (a) is assumed to be 

related to a von Bertalanffy growth equation: 

 
0(1 exp( ( )))

[ ]

a

a a

l l a t

w l
 (B.15) 

 

Growth parameter from Booth and Buxton (1997a and 1997b) were adopted. These are summarized in 

Table 10. For Jamaican conch, separate von Bertalanffy growth curves apply to juveniles and adults. 

Growth curves for adults are based on lip thickness, while those for juveniles are based on shell 
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length. For simplicity, a combined growth curve for both adults and juveniles, developed by 

Appeldoorn (2005b), has been used in this study.  The mass of meat at age a is given by: 

 

 exp( (1 exp( )))aw l a   (B.16) 

 

where aw corresponds to the 50% cleaned wet meat weight in grams (Table 14). 

 

 

B.2 Data generated by operating model for use in MPs  

 

B.2.1 Mean length data 

 

For South African panga, the annual mean length of the catch, when allowing for observation error, is 

given by: 

   

,

min

ˆ ˆ
m

y y a a

a a

l P l   (B.17) 

where  

al  is the length of fish of age a as per the von Bertalanffy growth curve given by equation 

(S.15), and 

2
, ,/(2 )

, ,
ˆ y a l y aP

y a y aP P e is the model-generated proportion of fish caught of age a  in year y

which is renormalized such that ,

min

ˆ 1
m

y a

a a

P . 

In the above formulation ,y aP denotes the proportion of fish of age a caught in year y of the 

simulation, given by: 

min

,

,

, '

'

y a

y a m

y a

a a

C
P

C

  

 

where ,y aC is the total number of fish caught of age a  in year y , given by equation (B.4), and  

2

, ,(0, / )y a l y aN P  reflect the variability for which the variance is assumed to be greater for those 

ages where sample sizes are smaller, with l  being a parameter related to the coefficient of variation 
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(CV) associated with the mean length data. A value of 0.4l  
is assumed which is consistent with 

fisheries such as that for South African hake. This “Punt-Kennedy” distribution form assumption for 

composition data is as advocated by Maunder (2011) in his comparative review of a number of such 

approaches. 

 

B.2.2 Index of abundance 

 

The CPUE/survey data are generated assuming that the abundance index is log-normally distributed 

about its expected value such that: 

ˆ y

y yI I e               (B.18) 

where 

yI  is the abundance index generated for year y, 

ˆ ˆˆ
y yI q B  is the corresponding model value, where B̂  is the model value for exploitable or 

survey biomass, given by equations (B.11) , (B.12) and (B.13), 

q̂  is the constant of proportionality for the abundance series (effectively the multiplicative 

bias if the series reflects abundance in absolute terms), and 

2~ (0, )y IN where I  is the coefficient of variation (CV) associated with the resource 

abundance index. A value of 0.4I  was assumed for the South African panga stock, 

consistent with what might typically be expected from a demersal trawl survey bycatch index. 

A value of 0.2I  was assumed for survey estimates for the Jamaican conch stock. 

 

B.2.3 Annual catches 

 

A key uncertainty when dealing with a data-poor resource is associated with the reliability of a limited 

set of data, in particular the historical catch series. Rather that assume that the historical catches are 

known without error, simulated catch data are generated assuming that total removals are log-

normally distributed about the reported historical catches, i.e.:  

2 /2C
y C

y yC C e   (B.19) 

where 

 
yC is the true catch in year y, 

 ˆ
yC is the reported catch for year y, which is input, and 
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2( , )C

y C CN  where 0.2C
is the standard deviation of the log-residuals, and 

[0,0.1]C U  is the mean which is sampled from a uniform distribution to account for the 

possibility of negative bias (under-reporting).  

 

Bias and noise are taken forward and incorporated in future catches in the same manner: 

2| | /2C
y C

y yC TAC e   (B.20) 

where
yTAC is the TAC generated by the harvest control rule for year y. 

 


